Relative performance of non-metric multidimensional scaling in vegetation studies. an
application to the Lama Forest Reserve (Benin)

I ntroduction

In vegetation studies, ordination aims at arrangiamples and/or species along a few axes
which must represent the main compositional grddiémthe data set, using either abundance or
presence/absence data (Jkland 1996). From Peaif€@1)(to today, a huge development has
occurred in ordination methods. Although all ordioa methods in current use are burdened with
defects (Dkland 1990) and none of them appropuatder all circumstances (Kenkel & Orlogi
1986), non-metric multidimensional scaling (NMDS)still undoubtedly the most widely accepted
and routinely used ordination technique (Podanb200

The first step but extremely important in NMDS isetcomputation of a matrix of
dissimilarities/similarities among a set of itenmsd multidimensional space (McCune & Grace
2002). In NMDS, several similarity measure indegan be considered and available in literature
(McCune & Grace 2002, Choi 2008). McCune & Gradg0@ recommend using the quantitative
Sgrensen coefficient whereas with reference t@timeiple of the method, Palm (2003) considered
the similarity index of Sokal & Michener which taketo account the co-presence and co-absence
of items. Jaccard index is also one of the moad sgailarity measure (McCune & Grace 2002). As
those indexes express differently the similarity,isi possible for them to result in different
ordinations. Standardization, a kind of data tramsftion which ecologically aims to make
distance measures work better, reduce the effedaofple unit totals to put focus on relative
guantities, equalize (or otherwise alter) the redaimportance of common and rare species or
emphasize informative species at the expense offarmative species (McCune & Grace 2002)
also affects results from NMDS (Faith et al. 198%jandardization should therefore be of
importance in ordination, mainly when calculatingsimilarities or similarities (Faith et al. 1987).

As mentioned above, NMDS can be applied eitherinarp (presence-absence) or abundance
data. We hypothesize that as more informationoesiged by abundance data, they are expected to
result in more reliable ordination compared to preg-absence data. In addition, sample size is a
key part of sampling design. Findings of severatligs reported that an increase in sample size
invariably results in improved estimation efficign@ondit et al. 1996). The effect of sample size
on the performance of NMDS is then an importaniess vegetation studies.

The purpose of this study was to analyze the xagberformance of NMDS in vegetation
studies focusing on the effect of sample size, dypkedata (binary versus abundance data) and
similarity (or dissimilarity) measures.

M ethodology

Data collection: Data used in this study come from Bonou et al. 2084nd are linked to the
identification of plant vegetation communities imetLama Forest reserve (LFR), a dense semi-
deciduous forest in Benin. Data were based on axradtPresence—absence of 31 species recorded
in 100 plots of 0.15 ha. We have also been prowdéd the abundance data.

Simulation design: Four factors including the nature of data, the damjze, the similarity indexes
and the type of data standardization were congiderehis simulation designThe basic matrix
used is the abundance data matrix (let M). Two sypledata matrix were considered: binary and
abundance data matrices. The binary matrices wenendfrom the abundance data matrices by
replacing all non-zero values with 1. Four valuéthe sample size were considered by truncating
(or not) the original data set: 25, 50, 75 and pl@@s. This was done using bootstrap, a resampling
method (Efron & Tibshirani 1993). For binary dataee similarity indexes were considered: Sokal
& Michener, Sorensen and Jaccard indexes. Frompthts i and j similarity values &),

dissimilarities ;) were drawn using the formula (Gower & Legendr8@)9d;; = ,/(1 — S;;). As

for abundance data, two dissimilarity indexes wexamined: the Sorensen dissimilarity (also
known as Bray-Curtis coefficient) and the Jaccarssithilarity indexes. Four techniques of



standardization (only abundance matrices were coad¢ have been used. The first one includes
the species adjustment to equal maximum abund48€&ad) i.e. divide abundance of a spedias

a given ploti by the species maximum abundance in the matrie. §dtond technique was the
samples standardization to equal totals (SAT) wikckquivalent to the computation of species
relative abundance (in %). The two last techniquese the Bray-Curtis successive double
standardizations i.e. SPM followed by SAT (let DBlahd inverse Bray-Curtis successive double
standardizations i.e. SAT followed by SPM (let DBLEor abundance data, each of the 4 sample
sizes was combined with the 5 different types ahdardization (nhon standardization was also
considered) and each of the two dissimilaritieexas. Forty (4x5%2) combinations were therefore
examined for abundance data whereas for binary, datzh sample size was only combined with
each of the 3 similarity indexes i.e. examinatibivmeelve (4x3) combinations. 500 replications for
each combination were generated using the bootschmique.

Data analysis: The basic assumption of NMDS is that for a goodratibn, there should be a
rank-order relationship between inter-sample digaity and inter-sample distance in the
ordination space (McCune & Grace 2002). This mahasthe more similar two samples are, the
closer they should be in the ordination space. iBeoV this assumption, the spearman rank
correlation (Rs) was used as criterion of efficken@/e also used the s-stress value (Takane &
Young 1977) as criterion of efficiency. It measuties departure from monotonicity in the plot of
distance in the original p-dimensional space (dhdarity) versus distance in the ordination space
(k-dimensional space). The closer the points lia taonotonic line, the better the fit and the lower
the stress (Kruskal & Carroll 1969). For each camahon of factors considered, the Rs correlation
and s-stress values were computed using a grougpads written in MATLAB software (V.
R2006a). Boxplots of the Rs and s-stress-valueslfazombinations of dissimilarity indexes and
types of standardization (for abundance data) amdlasity indexes (for presence-absence data)
were established. A visual analysis of the boxphetped selecting the best similarity index (binary
data) and the best combination of dissimilarityexdnd standardization (abundance data). This
selection was done with respect to the highestegatif the Rs and the lowest values of the s-stress.
ANOVA was then performed in SAS 9.2 software td the effect of sample size on efficiency
criteria with regard to the best combinations aftdas. When the effect of the sample size was
significant, contrast analysis (Everitt 2002) wasfprmed to model the relationship between
sample size and s-stress values and determingtimeab sample size. In this study, linear (s-stress
= Bo+ Pisize +¢) and quadratic (s-stresig + pisize +p1siz€ + ) models were tested.

Results

Efficiency of NDMS according to the factors considered for abundance data
Irrespective to sample size and type of standatidizs, the two dissimilarity measures

(Sorensen and Jaccard) performed equally (FiguréHg Spearman rank correlation (Rs) became
lower with the increase in the sample size and sdetim stabilize from 75 plots (Figure 1). Unlike
the dissimilarity index and the sample size, thevRsed greatly among types of standardization.
For most of the combinations of factors considerth@, standardization to equal totals (SAT)
yielded higher Rs values (> 0.939) than those predby the others. It was followed respectively
by no standardization (0), the inverse of the BTaytis double standardization (DBL2), the Bray-
Curtis double standardization (DBL1) and Speciepisithent to equal maximum abundances
(SPM) standardization (0.893). The same trend vedsdnfor s-stress values (Figure 2): regardless
to the sample size, the lower values of the sstvesre obtained for SAT. This standardization
therefore performed better than the others. Figiraad 2 clearly showed that the s-stress values
decreased when the Rs values increased. The foramged from 0.120 to 0.241. A closer
examination of Figure 2 denotes an increase ivesstvalue with sample size. From these
descriptive analyses, we deduced that SAT was disé siandardization and the two dissimilarity
indexes (Sorensen and Jaccard) were not distirgolisHor both Rs and s-stress. Results from
analysis of variance (ANOVA) showed significant B1<0.05) difference only for s-stress, with



regard to each of the two dissimilarity indexesljgating the significant effect of sample size en s
stress values. The linear and quadratic modelbeofdlationship between sample size and s-stress
values were highly significant. The quadratic modelk then retained to determine the optimum
sample size (Figure 3) which was 90 plots withséress value of 0.167.

Efficiency of NDMS according to the factors considered for binary data

Results revealed a decrease of Rs values, froni ¢f@2the Sorensen index) to 0.907 (for the
Jaccard index) when the sample size increasedr@=#gju As with abundance data, the dispersion
around the median value also decreased when saig@eincreased. Furthermore, for a given
sample size, the three similarity indexes examiyiettled approximately the same value. But, s-
stress values increase with sample size. The ssstt@ues ranged from 0.10 (Sokal & Michener
index) to 0.17 (Sorensen or Jaccard index). Whatsvihe sample size, Sokal & Michener index
yielded the lowest values of s-stress, and thezeveas retained for further investigations. The
ANOVA performed to test the effect of sample sibewed a significant difference (Prob.<0.05)
only for s-stress values. The linear and the qu&draodels were also shown to be highly
significant. The relationship between s-stress emland sample size for the quadratic model was
thus plotted (Figure 5) and indicated an optimuni®plots with a s-stress value of 0.120.

Discussion and Conclusion

This study is a complement to previous investigegion designing accurate and strong way
for vegetation data analysis. Consistently withti&t al. (1987) and McCune & Grace (2002),
results obtained showed that type of standardizagieatly affects NMDS efficiency. Some of
them improve ordinations in contrary to others. HBt@ndardization to sample totals (SAT) was
revealed to be the most outperformed. It then appat NMDS perform better when plots have
similar weight (number of trees or species). Speeadjustment to equal maximum abundance
(SPM) standardization often results in poor ordorat When applied alone, it was the least
successful standardization and then is very lit@mmended. But when used in combination with
SAT, the SPM is however preferable to be used beforbeing used after SAT. These results
somewhat contrast those of Faith et al. (1987) fehad the SPM standardization to perform better
than SAT for some dissimilarity indexes as Canbaredric and Chi-squared. This may suggest that
standardization effect varies according to thexedesince many dissimilarity coefficients have in-
built standardization (Faith et al. 1987).

The most critical step in selecting the appropriatethod of ordination is the choice of
dissimilarity index which must be compatible withadable data (Podani 2006). Results showed
that using quantitative version of either Jaccar8may-Curtis dissimilarity coefficient, the NMDS
yielded the same result indicating that despitér itiathematical difference (in reference to their
formulas) both are similar. This was confirmed by Spearman rank and Pearson linear correlation
between the two coefficients which were respectidielind 0.997. The same observations can be
drawn for binary matrices. Here however, Sokal &Miner similarity index showed the best
result. In addition to the co-presence which is oan to all the three indexes, this index takes into
account the co-absence of species when computindasty of a couple of plots (Palm 2003).
Sokal & Michener similarity index can therefore sagggested for use in NMDS as long as the data
matrix is binary. We then conclude that similaiitglexes do affect NMDS efficiency. However,
since only three indexes were examined in thisystiids possible for others dissimilarity indexes
to perform better than Sokal & Michener. Choi (2D88d Podani (2001) have actually described
respectively 76 indexes for binary data and 17xeddor ratio scale data.

The stress-value increased with the number of @at$ is consistent with the increase of
objects being scaled since stress can be viewadragance (McCune & Grace, 2002). Indeed, the
increase in sample size means an increase in shigestale and therefore an increase in the stress-
value. However, the lower coefficient of variati@btained with the increase in sample size
suggests the higher the sample size the more d@edheascaling.

Binary matrices were shown to be more efficienntbdundance matrices from which they
derived. Binary matrices yielded high valuefsfand the low stress values, probably because of
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Figure 1. Box plots of Spearman rank correlatianefach combination of similarity index, type ofraardization and sample size for abundance data.
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Figure 2. Boxplots of s-stress-values for each doatlon of similarity index, type of standardizatiand sample size for abundance data.

Legend: On the x-axis, first letters of variables @itials of the dissimilarity index (S=SorensdmJaccard); the following are relative to the typé standardization (0 = No
standardization; SPM=Species adjustment to equalmuen abundances; SAT=standardization to equalsto2BL1=SPM followed by SAT; DBL2=SAT followed b§PM).
Example: SSPM correspond to combination of Soreimmex and SPM.
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Figure 3. Relationship between s-stress-valuesanmiple size for Jaccard and Sorensen dissimikaritie
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Figure 4: Boxplots of Rs and s-stress-values fah@mmbination of similarity index and sample dizebinary data.

Legend: On the x-axis, first letters of variables ardials of the similarity index (S=Sorensen; J=Jagr&M=Sokal and Michener)
and the following are linked to the sample sizeafgle: SM25 correspond to combination of Sokal &hiner similarity index
and sample size of 25 plots.
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Figure 5. Relationship between the s-stress-valndsample size for Sokal & Michener index.

the small differences between pairs of objects Witk type of matrix in comparison to abundance
matrices. In fact, two plots containing the samecsggs will be viewed to be much closed with
presence-absence similarity indexes. But a sligtiffierence in species abundance can result in a
great distinction with quantitative (ratio scal&similarity coefficient.

The methodology of this study used the 2-dimensgpaes for the initial configuration. The
number of dimensions should be determined for eath matrix before choosing the dimension of
the initial configuration (Kruskal 1964a&b). In fathe determination of the number of dimensions
to use in the ordination space is an importanteissiNMDS. With simulated data, this is known as
a priori but for real data, a better method couddid use the dissimilarity matrix to calculate the
linkages of the minimum spanning tree (Gower andsRt969). However, the first few dimensions
are sufficient to explain most of the variation ga&oi 2001). Besides this aspect, Shepard (1962)
has strongly argued for solutions in two dimensiasshis is more readily interpretable.
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