
Relative performance of non-metric multidimensional scaling in vegetation studies: an 
application to the Lama Forest Reserve (Benin) 
 
Introduction 

In vegetation studies, ordination aims at arranging samples and/or species along a few axes 
which must represent the main compositional gradients in the data set, using either abundance or 
presence/absence data (Økland 1996). From Pearson (1901) to today, a huge development has 
occurred in ordination methods. Although all ordination methods in current use are burdened with 
defects (Økland 1990) and none of them appropriate under all circumstances (Kenkel & Orloçi 
1986), non-metric multidimensional scaling (NMDS) is still undoubtedly the most widely accepted 
and routinely used ordination technique (Podani 2005).  

The first step but extremely important in NMDS is the computation of a matrix of 
dissimilarities/similarities among a set of items in a multidimensional space (McCune & Grace 
2002). In NMDS, several similarity measure indexes can be considered and available in literature 
(McCune & Grace 2002, Choi 2008). McCune & Grace (2002) recommend using the quantitative 
Sørensen coefficient whereas with reference to the principle of the method, Palm (2003) considered 
the similarity index of Sokal & Michener which takes into account the co-presence and co-absence 
of items. Jaccard index is also one of the most used similarity measure (McCune & Grace 2002). As 
those indexes express differently the similarity, it is possible for them to result in different 
ordinations. Standardization, a kind of data transformation which ecologically aims to make 
distance measures work better, reduce the effect of sample unit totals to put focus on relative 
quantities, equalize (or otherwise alter) the relative importance of common and rare species or 
emphasize informative species at the expense of uninformative species (McCune & Grace 2002) 
also affects results from NMDS (Faith et al. 1987). Standardization should therefore be of 
importance in ordination, mainly when calculating dissimilarities or similarities (Faith et al. 1987). 

As mentioned above, NMDS can be applied either on binary (presence-absence) or abundance 
data. We hypothesize that as more information is provided by abundance data, they are expected to 
result in more reliable ordination compared to presence-absence data. In addition, sample size is a 
key part of sampling design. Findings of several studies reported that an increase in sample size 
invariably results in improved estimation efficiency (Condit et al. 1996). The effect of sample size 
on the performance of NMDS is then an important issue in vegetation studies. 

The purpose of this study was to analyze the relative performance of NMDS in vegetation 
studies focusing on the effect of sample size, types of data (binary versus abundance data) and 
similarity (or dissimilarity) measures.  

 
Methodology 
 

Data collection: Data used in this study come from Bonou et al. (2009) and are linked to the 
identification of plant vegetation communities in the Lama Forest reserve (LFR), a dense semi-
deciduous forest in Benin. Data were based on a matrix of Presence–absence of 31 species recorded 
in 100 plots of 0.15 ha. We have also been provided with the abundance data. 
 

Simulation design: Four factors including the nature of data, the sample size, the similarity indexes 
and the type of data standardization were considered in this simulation design. The basic matrix 
used is the abundance data matrix (let M). Two types of data matrix were considered: binary and 
abundance data matrices. The binary matrices were drawn from the abundance data matrices by 
replacing all non-zero values with 1. Four values of the sample size were considered by truncating 
(or not) the original data set: 25, 50, 75 and 100 plots. This was done using bootstrap, a resampling 
method (Efron & Tibshirani 1993). For binary data, three similarity indexes were considered: Sokal 
& Michener, Sorensen and Jaccard indexes. From the plots i and j similarity values (Sij), 
dissimilarities (dij) were drawn using the formula (Gower & Legendre 1986): ��� = �(1 − 
��). As 
for abundance data, two dissimilarity indexes were examined: the Sorensen dissimilarity (also 
known as Bray-Curtis coefficient) and the Jaccard dissimilarity indexes. Four techniques of 



standardization (only abundance matrices were concerned) have been used. The first one includes 
the species adjustment to equal maximum abundances (SPM) i.e. divide abundance of a species h in 
a given plot i by the species maximum abundance in the matrix. The second technique was the 
samples standardization to equal totals (SAT) which is equivalent to the computation of species 
relative abundance (in %). The two last techniques were the Bray-Curtis successive double 
standardizations i.e. SPM followed by SAT (let DBL1) and inverse Bray-Curtis successive double 
standardizations i.e. SAT followed by SPM (let DBL2). For abundance data, each of the 4 sample 
sizes was combined with the 5 different types of standardization (non standardization was also 
considered) and each of the two dissimilarities indexes. Forty (4×5×2) combinations were therefore 
examined for abundance data whereas for binary data, each sample size was only combined with 
each of the 3 similarity indexes i.e. examination of twelve (4×3) combinations. 500 replications for 
each combination were generated using the bootstrap technique. 
 

Data analysis: The basic assumption of NMDS is that for a good ordination, there should be a 
rank-order relationship between inter-sample dissimilarity and inter-sample distance in the 
ordination space (McCune & Grace 2002). This means that the more similar two samples are, the 
closer they should be in the ordination space. Provided this assumption, the spearman rank 
correlation (Rs) was used as criterion of efficiency. We also used the s-stress value (Takane & 
Young 1977) as criterion of efficiency. It measures the departure from monotonicity in the plot of 
distance in the original p-dimensional space (dissimilarity) versus distance in the ordination space 
(k-dimensional space). The closer the points lie to a monotonic line, the better the fit and the lower 
the stress (Kruskal & Carroll 1969). For each combination of factors considered, the Rs correlation 
and s-stress values were computed using a group of codes written in MATLAB software (V. 
R2006a). Boxplots of the Rs and s-stress-values for all combinations of dissimilarity indexes and 
types of standardization (for abundance data) and similarity indexes (for presence-absence data) 
were established. A visual analysis of the boxplots helped selecting the best similarity index (binary 
data) and the best combination of dissimilarity index and standardization (abundance data). This 
selection was done with respect to the highest values of the Rs and the lowest values of the s-stress. 
ANOVA was then performed in SAS 9.2 software to test the effect of sample size on efficiency 
criteria with regard to the best combinations of factors. When the effect of the sample size was 
significant, contrast analysis (Everitt 2002) was performed to model the relationship between 
sample size and s-stress values and determine the optimal sample size. In this study, linear (s-stress 
= β0+ β1size + ɛ) and quadratic (s-stress = β0 + β1size + β1size2 + ɛ) models were tested. 
 
Results  
 

Efficiency of NDMS according to the factors considered for abundance data 
Irrespective to sample size and type of standardizations, the two dissimilarity measures 

(Sorensen and Jaccard) performed equally (Figure 1). The Spearman rank correlation (Rs) became 
lower with the increase in the sample size and seemed to stabilize from 75 plots (Figure 1). Unlike 
the dissimilarity index and the sample size, the Rs varied greatly among types of standardization. 
For most of the combinations of factors considered, the standardization to equal totals (SAT) 
yielded higher Rs values (> 0.939) than those produced by the others. It was followed respectively 
by no standardization (0), the inverse of the Bray-Curtis double standardization (DBL2), the Bray-
Curtis double standardization (DBL1) and Species adjustment to equal maximum abundances 
(SPM) standardization (0.893). The same trend was noted for s-stress values (Figure 2): regardless 
to the sample size, the lower values of the s-stress were obtained for SAT. This standardization 
therefore performed better than the others. Figures 1 and 2 clearly showed that the s-stress values 
decreased when the Rs values increased. The former ranged from 0.120 to 0.241. A closer 
examination of Figure 2 denotes an increase in s-stress value with sample size. From these 
descriptive analyses, we deduced that SAT was the best standardization and the two dissimilarity 
indexes (Sorensen and Jaccard) were not distinguishable for both Rs and s-stress. Results from 
analysis of variance (ANOVA) showed significant (Prob.<0.05) difference only for s-stress, with 



regard to each of the two dissimilarity indexes, indicating the significant effect of sample size on s-
stress values. The linear and quadratic models of the relationship between sample size and s-stress 
values were highly significant. The quadratic model was then retained to determine the optimum 
sample size (Figure 3) which was 90 plots with a s-stress value of 0.167.  
 
Efficiency of NDMS according to the factors considered for binary data 

Results revealed a decrease of Rs values, from 0.921 (for the Sorensen index) to 0.907 (for the 
Jaccard index) when the sample size increased (Figure 4). As with abundance data, the dispersion 
around the median value also decreased when sample size increased. Furthermore, for a given 
sample size, the three similarity indexes examined yielded approximately the same value. But, s-
stress values increase with sample size. The s-stress values ranged from 0.10 (Sokal & Michener 
index) to 0.17 (Sorensen or Jaccard index). Whatever is the sample size, Sokal & Michener index 
yielded the lowest values of s-stress, and therefore was retained for further investigations. The 
ANOVA performed to test the effect of sample size showed a significant difference (Prob.<0.05) 
only for s-stress values. The linear and the quadratic models were also shown to be highly 
significant. The relationship between s-stress values and sample size for the quadratic model was 
thus plotted (Figure 5) and indicated an optimum of 75 plots with a s-stress value of 0.120. 
 
Discussion and Conclusion 

This study is a complement to previous investigations on designing accurate and strong way 
for vegetation data analysis. Consistently with Faith et al. (1987) and McCune & Grace (2002), 
results obtained showed that type of standardization greatly affects NMDS efficiency. Some of 
them improve ordinations in contrary to others. The standardization to sample totals (SAT) was 
revealed to be the most outperformed. It then appears that NMDS perform better when plots have 
similar weight (number of trees or species). Species adjustment to equal maximum abundance 
(SPM) standardization often results in poor ordination. When applied alone, it was the least 
successful standardization and then is very little recommended. But when used in combination with 
SAT, the SPM is however preferable to be used before to being used after SAT. These results 
somewhat contrast those of Faith et al. (1987) who found the SPM standardization to perform better 
than SAT for some dissimilarity indexes as Canberra metric and Chi-squared. This may suggest that 
standardization effect varies according to the indexes since many dissimilarity coefficients have in-
built standardization (Faith et al. 1987). 

The most critical step in selecting the appropriate method of ordination is the choice of 
dissimilarity index which must be compatible with available data (Podani 2006). Results showed 
that using quantitative version of either Jaccard or Bray-Curtis dissimilarity coefficient, the NMDS 
yielded the same result indicating that despite their mathematical difference (in reference to their 
formulas) both are similar. This was confirmed by the Spearman rank and Pearson linear correlation 
between the two coefficients which were respectively 1 and 0.997. The same observations can be 
drawn for binary matrices. Here however, Sokal & Michener similarity index showed the best 
result. In addition to the co-presence which is common to all the three indexes, this index takes into 
account the co-absence of species when computing similarity of a couple of plots (Palm 2003). 
Sokal & Michener similarity index can therefore be suggested for use in NMDS as long as the data 
matrix is binary. We then conclude that similarity indexes do affect NMDS efficiency. However, 
since only three indexes were examined in this study, it is possible for others dissimilarity indexes 
to perform better than Sokal & Michener. Choi (2008) and Podani (2001) have actually described 
respectively 76 indexes for binary data and 17 indexes for ratio scale data.  

The stress-value increased with the number of plots and is consistent with the increase of 
objects being scaled since stress can be viewed as a variance (McCune & Grace, 2002). Indeed, the 
increase in sample size means an increase in objects to scale and therefore an increase in the stress-
value. However, the lower coefficient of variation obtained with the increase in sample size 
suggests the higher the sample size the more accurate the scaling. 

Binary matrices were shown to be more efficient than abundance matrices from which they 
derived. Binary  matrices  yielded  high  values of Rs and the low stress values, probably because of  



 

 

 
 

Figure 1. Box plots of Spearman rank correlation for each combination of similarity index, type of standardization and sample size for abundance data. 
 
 

 
 

Figure 2. Boxplots of s-stress-values for each combination of similarity index, type of standardization and sample size for abundance data. 

 
Legend: On the x-axis, first letters of variables are initials of the dissimilarity index (S=Sorensen; J=Jaccard); the following are relative to the types of standardization (0 = No 
standardization; SPM=Species adjustment to equal maximum abundances; SAT=standardization to equal totals; DBL1=SPM followed by SAT; DBL2=SAT followed by SPM). 
Example: SSPM correspond to combination of Sorensen index and SPM. 
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Figure 3. Relationship between s-stress-values and sample size for Jaccard and Sorensen dissimilarities. 
 

 
 

Figure 4: Boxplots of Rs and s-stress-values for each combination of similarity index and sample size for binary data. 
 

Legend: On the x-axis, first letters of variables are initials of the similarity index (S=Sorensen; J=Jaccard; SM=Sokal and Michener) 
and the following are linked to the sample size. Example: SM25 correspond to combination of Sokal & Michener similarity index 
and sample size of 25 plots.  

 
Figure 5. Relationship between the s-stress-values and sample size for Sokal & Michener index. 

 
the small differences between pairs of objects with this type of matrix in comparison to abundance 
matrices. In fact, two plots containing the same species will be viewed to be much closed with 
presence-absence similarity indexes. But a slightly difference in species abundance can result in a 
great distinction with quantitative (ratio scale) dissimilarity coefficient.  

The methodology of this study used the 2-dimensions spaces for the initial configuration. The 
number of dimensions should be determined for each data matrix before choosing the dimension of 
the initial configuration (Kruskal 1964a&b). In fact, the determination of the number of dimensions 
to use in the ordination space is an important issue in NMDS. With simulated data, this is known as 
a priori but for real data, a better method could be to use the dissimilarity matrix to calculate the 
linkages of the minimum spanning tree (Gower and Ross, 1969). However, the first few dimensions 
are sufficient to explain most of the variation (Podani 2001). Besides this aspect, Shepard (1962) 
has strongly argued for solutions in two dimensions as this is more readily interpretable. 
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