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Abstract

This paper deals with the numerical convergence of a cyclic iterative optimization algorithm
(CA algorithm) recently developed for maximum likelihood estimation of the parameters of a
multinomial model used in road safety modelling. We compare the CA algorithm to some clas-
sical constrained optimization algorithms as Nelder–Mead’s (NM), Broyden–Fletcher–Goldfarb-
Shanno’s (BFGS) and Conjugate Gradient (CG). Road accident data is simulated afterwards each
of the compared method is applied. In addition to the estimates of the parameters, some useful
information as the mean squares error have been computed. The results obtained, for an overall
fifty-four thousand (54 000) simulations, show that the CA algorithm is more efficient not only as
far as the accuracy is concerned but also and most importantly it is upto 1300 times quicker than
the three others.

Keywords - Road safety modelling, Cyclic algorithm, Maximum likelihood, Multinomial distri-
bution, Constrained optimization.

1 Presentation of the model
This is the before-after multinomial model used by N’GUESSAN and TRUFFIER [6] to assess the im-
pact of a change in road conditions on the incidence of crashes. This model is an extension of the
one described by TANNER [8] to evaluate the effect of modifications on the road network in the case
where several mutually exclusive types of crashes are considered simultaneously.

Consider an integer R representing the number of different types of crashes, the vectors x1 =
(x11, . . . , x1R)

T and x2 = (x21, . . . , x2R)
T representing respectively the accidents data before and

after installation of changes in the experimental zone, with x1j (resp. x2j) the number of accidents of
type j occurred before (resp. after) installation of changes in the experimental zone. Also consider a
vector c = (c1, c2, . . . , cR)

T of known constants.
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Let α = (α0, π1, π2, . . . , πR)
T a (1 +R)× 1 parameter vector of unknown components such that:

α0 > 0, πj > 0 and
R∑
j=1

πj = 1 (1)

The parameter α0 is the average effect on the incidence of crashes in the experimental zone after
installation of changes, πj(α) is the probability of having a type j accident in the experimental zone
both periods (before and after) confounded.

The vector (x1, x2) = (x11, . . . , x1R, x21, . . . , x2R)
T is assumed to have the following multinomial

distribution:
M (n; p11(α), . . . , p1R(α), p21(α), . . . , p2R(α))

with

p1j(α) =
πj

1 + α0

∑R
j=1 cjπj

, p2j(α) =
α0cjπj

1 + α0

∑R
j=1 cjπj

∀j = 1, . . . , R (2)

respectively the probabilities of having a type j crash in the before (resp. after) period and

n =
R∑
j=1

x•j , the total number of accidents.

2 Estimation of the parameters

2.1 The constrained maximum likelihood approach
The log-likelihood associated to a given data (x11, . . . , x1R, x21, . . . , x2R) can be calculated as:

LL(x1, x2;α) = Constant +
R∑
j=1

{
x•j log(πj) + x2j log(α0)− x•j log

(
1 + α0

R∑
m=1

cmπm

)}
(3)

where x•j = x1j + x2j .

An estimate α̂ = (α̂0, π̂1, . . . , π̂R)
T of the true parameter vector α = (α0, π1, . . . , πR)

T can be
obtained by resolving the following constrained optimization problem:

max
α

LL(x1, x2;α)

subject to:
α0 > 0, πj > 0,∀j = 1, . . . , R

and
R∑
j=1

πj = 1

(4)

Many iterative methods can be used to solve the problem (4) such as Newton-Raphson (NR), Nelder–
Mead algorithm (NM) (see [4]), Boyden–Fletcher–Goldfarb–Shanno method (BFGS) (see [1, 2, 3,
7]), Conjugate Gradient (CG). It is well known that the NR method requires the computation of the
log-likelihood gradient and most importantly the Hessian matrix while NM, CG and BFGS do not
need the expression of the log-likelihood function’s hessian matrix. Indeed BFGS and CG only need
the log-likelihood’s gradient while NM does not even need it.
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In order to avoid the computation of the log-likelihood gradient and most importantly the Hessian
matrix that can be very costly, N’GUESSAN [5] proposed the following approach. After introduction
of one Lagrange multiplier due to the equality constraint in (4) and after calculation of the partial
derivatives of the log-likelihood function with regards to each component of the parameter vector α,
it is found that (4) is equivalent to the following system:

R∑
j=1

{
x2j − x•j

α̂0

∑R
m=1 cmπ̂m

1 + α̂0

∑R
m=1 cmπ̂m

}
= 0

x•j − n
π̂j(1 + cjα̂0)

1 + α̂0

∑R
m=1 cmπ̂m

= 0, (j = 1, 2, · · · , R)

(5)

2.2 The CA Algorithm
The Cyclic Algorithm (CA algorithm) was built using the following approach. N’GUESSAN [5]
proposed to set the first component α0 and then solve the second subsystem with regards to the com-
ponents π1, π2, . . . , πR using some matrix transformations. Afterwards he used the solution to solve
the first equation of (5) with respect to α0, and vice versa. It is proved (see [5]) that the components
of the solution α̂ = (α̂0, π̂1, . . . , π̂R) of the problem (5) can be obtained as:

α̂0 =

∑R
m=1 x2m(∑R

m=1 cm π̂m

)
×
(∑R

m=1 x1m

);

π̂j =
1

1−
1

n

∑R
m=1

α̂0cmx•m

1 + α̂0cm

×
x• j

n(1 + α̂0 cj)
,

(j = 1, 2, · · · , R).

(6)

The algorithm can be summarized in the following lines:

1. Initialisation: Give a value to π̂(0) =
(
π̂
(0)
1 , . . . , π̂

(0)
R

)T
.

2. At the (k + 1)−th step:

(a) Calculate α̂(k+1)
0 from π̂(k) using equation (6).

(b) Calculate π̂(k+1) from α̂
(k+1)
0 using equation (6).

3. Stop criterion: stop when no considerable increase is observed in the log-likelihood function.

3 Numerical results
N’GUESSAN [5] has already dealt with the Newton-Raphson algorithm for solving the problem (4)
and he showed that the CA Algorithm is more accurate than NR. Our work focuses on comparison
of the CA algorithm to the other classical constrained optimization algorithms mentioned above i.e.
NM, BFGS and CG.

The results presented in this work correspond to the caseR = 3, α0 = 0.8, π1 = 0.025, π2 = 0.232,
π3 = 0.743 and c1 = c2 = c3 = 1.
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The initial parameter vector π̂(0)’s components are calculated as: π(0)
j = ej/

(∑R
m=1 em

)
, j =

1, . . . , R where e = (e1, . . . , eR) is a vector of R randomly generated values from an uniform distri-
bution between 0.01 and 1. The parameter α(0)

0 is set by the user.

Knowing the true values of p = (p11(α), . . . , p1R(α), p21(α), . . . , p2R(α)), N = 1 000 repetitions
of the following process are done: a vector x whose distribution is the multinomial distribution

M (n; p11(α), . . . , p1R(α), p21(α), . . . , p2R(α))

is simulated; afterwards vector x1 (resp. x2) components are deduced as the first (resp. last) R values
of x; afterwards the parameter vector is estimated with each of the four compared methods.

For a given method meth ∈ {CA,NM,CG,BFGS}) and a parameter vector estimate
α̂meth(k) =

(
α̂0,meth(k), π̂1,meth(k), . . . , π̂R,meth(k)

)
of dimension (1 + R) estimated with meth for the

kth repetition (k = 1, . . . , N), the estimated parameter vector, α̂meth, is calculated as:

α̂meth =
1

N

N∑
k=1

α̂meth(k)

In order to check the efficiency of the estimation, the mean squared error (MSE) associated to the
method meth is calculated as:

1

N(1 +R)

N∑
k=1

‖α̂meth(k) − α‖2 (7)

with α the true parameter vector.

A few results corresponding to two values of the total number of crashes n (small value n = 50
and great value n = 5000) are presented in tables 1 and 2. In these tables, mean values of iterations
are calculated only when there is convergence. The duration ratio of the method meth is the ratio
between the mean duration of meth and the mean duration of the CA algorithm (i.e. the duration
ratio of the CA algorithm always equals 1). A duration ratio greater than 1 means that CA algorithm
is quicker. It is computer-free while the time duration depends on the computer.

It can be seen in tables 1 and 2 that CA algorithm is at least as accurate as the others but most
importantly CA algorithm is much more quicker than the three others i.e. it needs much less iterations
and time.
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TRUE CA NM CG BFGS
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