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1 Introduction

Risk measures are thought of as mappings from a set of real-valued random variables to the real
numbers. There exist several types of risk measures in the literature. We refer to Govaerts et
al. (1984) for various examples and properties of such Risk measures. One of the most popular
measures in hydrology and climate is undoubtedly the return period. A frequency analysis in
hydrology focuses on the estimation of quantities (e.g., flows or annual rainfall) corresponding to
a certain return period. It is closely related to the notion of quantile which has therefore been
extensively studied. For a real value random variable X with E[X] < ∞, that represents the
magnitude of an event that occurs at a given time and at a given site, the quantile of order 1− 1

T

expresses the magnitude of the event which is exceeded with a probability equal to 1
T . T is then

called the return period. In the acturial financial litterature, or more generally in the risk theory
the quantile is known as the Value-at Risk (VaR) and it is defined by

Q(α) = inf{x ∈ R+ : F (x) ≥ α}, for α ∈ (0, 1),

with F the distribution function of event X. A second important risk measure, based on the
quantile notion, is the Conditional-Tail-Expectation (CTE) defined by

CTEα[X] = E(X|X > Q(α)), for α ∈ (0, 1).

Since the distribution function F is continuous, we easily check that CTEα[X] is equal to

Cα[X] = 1
1− α

∫ 1

α

Qn(s)ds.

Hence, from now on we work with Cα[X] and call it the CTE for short. Naturally, the CTE
is unknown since the cdf F is unknown. Hence, it is desirable to establish appropriate statistical
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inferential results such as confidence intervals for Cα[X] with specified confidence levels and margins
of error.
Namely, suppose that we have (X1, ..., Xn) a sample of independent and identically distributed
random variables from F and let X1,n ≤ ... ≤ Xn,n denote its order statistics.
A natural estimator for Cα[X] can be obtained by

Ĉn,α[X] = 1
1− α

∫ 1

α

Qn(s)ds. (1)

where Qn(s) is the empirical quantile function, which is equal to the ith order statistic Xi,n for all
s ∈ ((i− 1)/n, i/n], and for all i = 1, ..., n. The asymptotic behavior of the estimator Ĉn,α[X] has
been studied by Brazauskas et al. (2008), when E[X2] <∞.

This paper deals with the estimation problem of the CTE within the class of heavy-tailed distri-
bution, i.e. we assume that

F (x) = x−1/γ`F (x) (2)

where γ > 0 is the extreme value index and `F is a slowly varying function at infinity satisfying
`F (λx)/`F (x) → 1 as x → ∞ for all λ > 0. Moreover we focus our paper on the case γ ∈

( 1
2 , 1
)

in order to ensure that the Cα[X] is finite for every α ∈ (0, 1) and since in that case the results of
Brazauskas et al. (2008) cannot be applied, the second moment of X being infinite.
The estimation of γ has been extensively studied in the literature and the most famous estimator
is the Hill (1975) estimator defined as:

γ̂Hn,k = 1
k

k∑
j=1

j (logXn−j+1,n − logXn−j,n) (3)

for an intermediate sequence k = k(n), i.e. a sequence such that k →∞ and k/n→ 0 as n→∞.
Note that the Cα[X] can be rewriten by tranformation into

Cα[X] = 1
1− α

∫ 1−k/n

α

Q(s)ds+ 1
1− α

∫ k/n

0
Q(1− s)ds.

=: C
(1)

α [X] + C
(2)

α [X].

By taking into account different asymptotic properties of moderate an high quantiles in the case
of heavy-tailed distributions, we obtain the following alternative estimator of the CTE

C̃n,α[X] = 1
1− α

∫ 1−k/n

α

Qn(s)ds+ k/n

(1− α)(1− γ̂Hn,k)
Xn−k,n.

=: C̃(1)
n,α[X] + C̃(2)

n,α[X]. (4)

We estimate C̃(1)
n,α[X] by using the same trick as for (1), whereas for C̃(2)

n,α[X] we use a Weissman
estimator for Q: Q̂(1− s) := Xn−k,n

(
k
n

)γ̂Hn,k s−γ̂Hn,k , s→ 0 (see Weissman, 1978).
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It is easy to check that C̃(1)
n,α[X] can be rewritten as

C̃(1)
n,α[X] = 1

1− α

n−k∑
j=1

((
j

n
− α

)
+
−
(
j − 1
n
− α

)
+

)
Xj,n,

where (s − α)+ is the classical notation for the positive part of (s − α). In this paper we deal
with the problem of bias of the estimator C̃n,α[X]. Asymptotic normality for C̃n,α[X] is obviously
related to the one of γ̂Hn,k. As usual in the extreme value framework, to prove such type of results,
we need a second-order condition on the function U(x) = Q(1− 1/x) such as the following:

Condition (RU). There exist a function A(x)→ 0 as x→∞ of constant sign for large values of
x and a second order parameter ρ ≤ 0 such that, for every x > 0,

lim
t→∞

log U(tx)− log U(t)− γ log x
A(t)

= xρ − 1
ρ

, (5)

when ρ = 0, then the ratio on the right-hand side of equation (5) should be interpreted as log x.

Note that condition (RU) implies that |A| is regularly varying with index ρ (see, e.g. Geluk and
de Haan, 1987). It is satisfied for most of the classical distribution functions such as the Pareto,
Burr and Fréchet ones.

2 Main results

We start to give in Theorem 1, an approximation of C̃n,α[X] in terms of Brownian bridges, which
leads to its asymptotic normality stated in Corollary 1. As it exhibits some bias, we propose a
reduced-bias estimator.

2.1 Asymptotic results for the CTE estimator

Theorem 1. Assume that F satisfies (RU) with γ ∈ (1/2, 1). They for any sequence of integer
k = k(n) satisfies k →∞, k/n→ 0 and

√
kA(n/k) = O(1) as n→∞, we have

√
n(1− α)

(k/n)1/2U(n/k)

(
C̃n,α[X]− Cα[X]

)
D=
√
kA
(n
k

)
AB(γ, ρ) + Wn,1 + Wn,2 + Wn,3 + oP(1)

where
AB(γ, ρ) := γρ

(1− ρ)(γ + ρ− 1)(1− γ)2

and 

Wn,1 := −
∫ 1−k/n

0 Bn(s)dQ(s)
(k/n)1/2Q(1− k/n)

Wn,2 := − γ

(1− γ)

√
n

k
Bn(1− k/n)

Wn,3 := γ

(1− γ)2

√
n

k

∫ 1

0
s−1Bn(1− sk/n)d(sK(s)).
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with K(s) = 1l0<s<1).

Corollary 1. Under the assumptions of Theorem 1, if
√
kA(n/k)→ λ ∈ R, we have

√
n(1− α)

(k/n)1/2U(n/k)

(
C̃n,α[X]− Cα[X]

)
D−→ N (λAB(γ, ρ),AV(γ)) .

where AB(γ, ρ) is as above and

AV(γ) = γ4

(2γ − 1)(1− γ)4 .

The goal of the next section is to propose a reduced-bias estimator of Cα[X].

2.2 Estimating the CTE with the Least Squared approach

In this paper, we use the bias-reduced estimator of the high quantile Q(1 − s) proposed by
Feureverger and Hall, (1999), Beirlant et al. (2002).
Using (RU), Feuerverger and Hall (1999) and Beirlant et al (1999, 2002) proposed the following
exponential regression model for the log-spacings of order statistics:

Zj,k ∼

(
γ +A(n/k)

(
j

k + 1

)−ρ)
+ εj,k, 1 ≤ j ≤ k, (6)

where εj,k are zero-centered error terms. If we ignore the term A(n/k) in (6), we retrieve the
Hill-type estimator γ̂Hn,k by taking the mean of the left-hand side of (6). By using a least-squares
approach, (6) can be further exploited to propose a reduced-bias estimator for γ in which ρ is
substituted by a consistent estimator ρ̂ = ρ̂n,k (see for instance Beirlant et al, 2002) or by a
canonical choice, such as ρ = −1 (see e.g. Feuerverger and Hall (1999) or Beirlant et al (1999)).
The least squares estimators for γ and A(n/k) are then given by

γ̂LSn,k (ρ̂) = 1
k

k∑
j=1

Zj,k −
ÂLSn,k(ρ̂)
1− ρ̂

,

ÂLSn,k(ρ̂) = (1− 2ρ̂)(1− ρ̂)2

ρ̂2
1
k

k∑
j=1

( j

k + 1

)−ρ̂
− 1

1− ρ̂

Zj,k.

(7)

The asymptotic normality of γ̂LSn,k (ρ̂) and ÂLSn,k(ρ̂) is stablised in Beirlant et al. (2002, Theorem
3.2 . Note that γ̂LSn,k (ρ) can be viewed as a kernel estimator

γ̂LSn,k (ρ̂) = 1
k

k∑
j=1

K
ρ̂

(
j

k + 1

)
Zj,k,

where for 0 < u ≤ 1:

Kρ(u) = 1− ρ
ρ

K(u) +
(

1− 1− ρ
ρ

)
Kρ(u)
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with K(u) = 1l{0<u<1} and Kρ(u) = ((1− ρ)/ρ)(u−ρ − 1)1l{0<u<1}.
Now, we are going to propose an adaptive unbiased estimation procedure for Cα[X] that is based
on the above estimators. Considering the following unbiased Weissman’s estimator of the extreme
quantile base on the second order rafinements,

Q̂LS,̂ρ(1− s) = (ns/k)−γ̂
LS
n,k(ρ̂)Xn−k,n

(
1− ρ̂−1ÂLSn,k(ρ̂)

(
1− (ns/k)−ρ̂

))
, (8)

where ρ̂, γ̂LSn,k (ρ̂) and ÂLSn,k(ρ̂) denote the corresponding estimators of ρ, γ and A(n/k) outlined
above based on the exponnential regression model. By using the same argument in (4), we arrive
at the the following unbiased estimator of Cα[X]

C̃LS,̂ρn,α [X] = 1
1− α

n−k∑
j=1

((
j

n
− α

)
+
−
(
j − 1
n
− α

)
+

)
Xj,n

+ k/n

(1− α)(1− γ̂LSn,k (ρ̂))

(
1−

ÂLSn,k(ρ̂)
γ̂LSn,k (ρ̂) + ρ̂− 1

)
Xn−k,n. (9)

Our next goal is to establish, under suitable asumptions, the asymptotic normality of C̃LS,̂ρn,α [X]
and we provide simulations which aim at studying the practical behavior of the new estimator
C̃LS,̂ρn,α [X], as far as to compare its performances to the biased estimator C̃n,α[X]. A real case in
environmental framework is also analyzed.
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