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Summary

Matrix population models are widely used to predict population dynamics but, when
applied to species rich ecosystems with many rare species, the small population sam-
ple sizes hinder a good fit of species-specific models. This issue can be overcome by
assigning species to groups to increase the size of the calibration data sets. However,
the species classification is often disconnected from the models and from the parameter
estimation, thus bringing species groups that may not be optimal with respect to the pre-
dicted community dynamics. We proposed here a method that jointly classified species
into groups and fit the matrix models in an integrated way. The model was a special case
of mixture with unknown number of components and was cast in a Bayesian framework.
An MCMC algorithm was developed to infer the unknown parameters: the number of
groups, the group of each species and the dynamics parameters. We applied the method
to a data set from a tropical rain forest in French Guiana.

Key-words: Bayesian, clustering, mixture models, reversible jump Markov chain Monte
Carlo.

1 Introduction
The conservation of animal and plant species and their biological control require models to
understand and predict population dynamics (Demyanov et al. 2006). Among population dy-
namics models, projection matrix models have been widely used to investigate the dynamics
of age-, stage- or size-structured populations. They provide a simple way of integrating vital
rate information such as recruitment, birth, growth or ageing, and mortality.

In species-rich ecosystems high diversity implies that the sample size for most species
is limited. The small sample size hinders a good fit of species-specific dynamics models.
To address this problem, modellers usually cluster species into groups. To cluster the species
while ensuring optimality for predicting community dynamics we need to rely on the mixture
model framework.
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This study aims at extending mixture modelling to matrix population models (Mortier
et al. 2012). The mixture of matrix population models consists in a probabilistic model-based
clustering method expressed in terms of matrix population mixture models with an unknown
number of components (Marin et al. 2005). The number of groups and the parameters of
the matrix population models associated with each group are the unknown quantities. We
propose to use a Bayesian framework to infer these unknown quantities.

The mixture of matrix models is defined in the next section. An inference method is
then outlined. The mixture matrix model is finally applied to a data set from the Paracou
tropical rain forest in French Guiana. The tree species groups thus obtained had consistent
ecological behaviours with contrasted functional traits, and compared favourably to other
groups obtained by a standard classification technique.

2 Models and inference

2.1 Usher model for a species
The Usher (1969) model is a matrix population model for size-structured populations. It is
based on the description of the change of the population by a vector, Nt, of the numbers of
individuals in L ordered state classes at discrete time t. The components of vector Nt, Nl,t

for l = 1, . . . , L, are the numbers of individuals in each class l. The relationship between Nt

and Nt+1 is described by a L× L transition matrix U , called the Usher matrix:

Nt+1 = UNt (1)

where U is equal to:

U =


p1 + f f . . . f
q1 p2 0

. . . . . .
0 qL−1 pL

 .

pl is for an individual the probability to stay in class l, ql the probability to move up from class
l to l + 1 and f the average fecundity. ql and pl take values in [0, 1], whereas f takes values
in R+. The probability of dying for an individual in class l is given by ml = 1 − pl − ql.
Let d = (d1, . . . , dL) be the class-distribution of the population such as

∑L
l=1 dl = 1. dl

denotes the probability that an individual of the population chosen at random belongs to the
class l. As individuals were assumed to be independent (see Usher 1969 assumptions), the
model can be described at the species level. Let Nt−1 =

∑L
l=1Nl,t−1 be the total number of

individuals of a given species at time t− 1. Let Nl,l,t denote the number of individuals of this
species staying in class l between t − 1 and t, Nl,l+1,t the number of individuals moving up
from class l to l+ 1 between t− 1 and t, and Nl,†,t the number of individuals dying in class l
between t − 1 and t. Let Rt be the number of recruits between t − 1 and t, assumed to be a
Poisson random variable with parameter fNt−1. Finally, let N = (N1,l,t, . . . NL,†,t,Nt−1, Rt)

2



describe the vector of the observations at times t− 1 and t. Then, the likelihood is equal to

L (N|θ) =
L−1∏
l=1

Mult (Nl,l,t, Nl,l+1,t, Nl,†,t|pl, ql,ml, Nl,t−1) (2)

×Mult (NL,L,t, Nl,†,t|pL,mL, NL,t−1)

×Mult (N1,t−1, . . . , NL,t−1|d1, . . . , dL, Nt−1)

×P(Rt|fNt−1)

where Mult denotes the multinomial distribution, P the Poisson distribution and, θ =
(p,q,m, f,d) ∈ [0, 1]3L−1 × R+ × [0, 1]L is the parameters vector where p = (p1, . . . , pL),
q = (q1, . . . , qL−1), m = (m1, . . . ,mL).

2.2 Mixture of matrix population models with unknown number of com-
ponents

In this paper, we focus on the unsupervised classification of S species into different groups
(G1, . . . , GK) with an unknown number K of groups. Let C = (C1, . . . , CS) be the latent
class vector which describes the group of species s. For example, the species 1 is classified in
the third group: C1 = 3. The dynamics of each group is modelled by a matrix model, so that
the dynamics of the forest stand is a mixture of K matrix models. Let θ = (θ1, . . . , θK) be
the parameters associated with the K matrix models. Using the same notation as above but
with an additional superscript s, Ns =

(
N s

1,l,t, . . . N
s
L,†,t,N

s
t−1, R

s
t

)
, gives the vector of the

observations for species s = 1, . . . , S and N = (N1, . . . ,NS) is the vector of the observa-
tions for all species. Then, in terms of the mixture model, posterior density distribution can
be expressed as follows:

πN
C,θ,K(C, θ,K|N) ∝

S∏
s=1

L(Ns|θCs) π
0
C|θ,K(C|θ,K) π0

θ|K(θ|K) π0
K(K) (3)

where π0
C|θ,K , π0

θ|K and π0
K are the prior densities distributions associated with the class latent

random variables, the parameters of each matrix models and the number of groups, respec-
tively.

2.3 Prior distributions
For full Bayesian inference of the model, we set the followings priors on the unknown quan-
tities C, θ and K. Two prior distributions for the number K of groups were tested: (i)
distributed as a uniform distribution: π0

K(K) ≡ U(Kmin, . . . , Kmax). The only subjective
inputs for this prior are Kmin,(ii) K is distributed as a Poisson random variable with mean
one, truncated to strictly positive values: π0

K(K) ≡ P(1)\{0}

π0
θ|K(θ|K) =

K∏
k=1

{ L−1∏
l=1

π0
p,q,m|l,k(plk, qlk,mlk)

}
π0
p,m|k(pLk,mLk) π

0
f |k(fk) π

0
d|k(dk)
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For all diameter classes l and all groups k, we chose the conjugate Dirichlet prior distribution:
π0
p,q,m|l,k ≡ D(1, 1, 1) for l < L and π0

p,m|k ≡ D(1, 1). As the number of recruits for each
group k was a Poisson random variable with parameter fkNk

t−1, we chose, for all groups
k, the conjugate gamma prior distribution G for the fecundity parameter fk. Moreover, as
the number of births in a group is roughly equal to 1% of the number of individuals in this
group: π0

f |k ≡ G(0.01, 1). This prior distribution reflects the expert’s knowledge. Finally,
we assumed, for all groups k, that the parameters of the class-population distribution dk =
(d1k, . . . , dLk) were distributed as a Dirichlet distribution: π0

d|k ≡ D(1, . . . , 1).
The prior for the class vector C assumed that, given the number of groups, each species

could equally and independently of the other species be in any group: π0
C|θ,K(C|θ,K) =∏S

s=1 π
0
C|K(Cs|K) where π0

C|K(Cs|K) is a uniform distribution on the number of groups:
U(1, . . . , K).

The inference of parameters is made through the investigation of the posterior distribution
πN
C,θ,K(C, θ,K|N) defined by equation 3. As the number of groups is unknown, the poste-

rior distribution is not available in an analytic form. Then, we propose to run a Metropolis
within Gibbs Monte Carlo Markov chain (MCMC). The algorithm consists of three moves:
increasing the number of groups (birth case); decreasing the number of groups (death case);
keeping the same number of groups but potentially changing one species assignment (no
jump case). In the first two cases, the number of parameters is not constant, so a Reversible
Jump MCMC approach is used, whereas in the third case, a Gibbs step can be used. All
moves are equally distributed with probability 1/3. To save place, details and R package can
be found in appendix of Mortier et al. (2012).

3 Application
Data were collected at the Paracou experimental site (5◦18′N, 52◦53’W), French Guiana. The
site is located in a undisturbed terra firme forest under equatorial climate. Three 250 m ×
250 m permanent sample plots (18.75 ha in total) have been established in 1984 and left
as control of the undisturbed forest dynamics. All trees greater than 10 cm dbh (diameter
at breast height) have been identified and georeferenced. Girth at breast height, standing
deaths, treefalls and newly recruited trees greater than 10 cm dbh have been monitored either
annually or every two years since 1984 (Gourlet-Fleury et al. 2004). The data set consisted
of 93 species collected in 1993 and 1995 on the three control plots.

Based on 50 different chains, and 20000 iterations after a burn-in of 10000 iterations, five
groups were obtained. The mixture of Usher matrix models classified species according to
both their growth rate and their maximum size (Picard et al. 2012). When plotting species
along these two axes, species groups were clearly separated (Figure 1). Because these two
axes can be used to order species along a continuum of ecological strategies, this means
that the mixture of Usher matrix models was also able to classify species in a way that is
consistent with their autecology.
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Figure 1: Upper bound of diameters (95% quantile of dbh in 1995, in cm) versus mean
diameter increment between 1993 and 1995 (cm) for 93 species at Paracou, French Guiana.
The five different symbols correspond to the five groups defined by the mixture matrix model.
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