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1. Introduction 

Concordance analysis is a comparison between the results generated by two laboratories 

in which the assay methods used by each laboratory are considered subject to random 

measurement errors. Here neither of the laboratories involved is considered the “gold 

standard”. Otherwise, it becomes a calibration problem.  

The importance of the method stemmed from the fact that pharmaceutical company 

manages or partnerships with laboratories scattered around the world or outsources the 

testing of their clinical samples. By successfully demonstrating concordance between 

laboratories, clinical trial can be tested in multiple laboratories throughout a clinical 

program.  

2. Materials and Methods 

A typical design of concordance analysis requires a panel of 30-60 samples covering the 

range of the assay. It is suggested that the panel of the samples used should consist of 

low, medium, and high concentration samples. It is also suggested to include samples less 

than the lower limit of quantitation (LLOQ) of the assay for the purpose of verifying of 

the assay in both laboratories. Ideally, in each laboratory, qualified technician shall 

execute 3-6 independent runs for each sample of the panel.   

The comparison between the assays was performed based upon the geometric mean titers 

(GMT) of each sample. The GMT result for an individual sample was obtained by 

averaging the results of each run. To appropriately compute the GMTs, precautious step 

shall be followed for those results that could not be quantitated. Individual titers listed 

below the LLOQ in each laboratory shall be assigned half of the LLOQ. If the computed 

GMT has result below the LLOQ, it shall be reported ‘<LLOQ’. For concordance 

analysis samples with GMTs below the LLOQ shall be used to assess sensitivity of the 

assay and not included in the estimation procedure. 

2.1. Estimation of intercept and concordance slope 

The test results between two laboratories were compared and the intercept and 

concordance slope was estimated using the errors in variables model. The estimates were 

calculated under the assumption that the two assay procedures have comparable 

variability (=1) as the methods were validated in each laboratory. The following model, 

which naturally models comparison studies and is known as errors-in-variables model 

was used (Tan and Iglewicz, 1999): 
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where Xi and Yi   denote the  log  of measurements (GMT) in both laboratories of the i
th

 

sample, respectively. Due to the nature of the assay, log base 2 is used for quantal assay 

while log base 10 is used for continuous assay; however, any base could be used. i and 

i represent the unobservable population parameter (“true values”) of  Xi and Yi , 

respectively. In the previous model the measurement errors, i and i are assumed to be 

bivariate Gaussian with mean zero and variances 2
.  
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The concordance intercept and slope were estimated as XY  ˆˆ  , and 

 

xy

xyxxyyxxyy

S

SSSSS

2

4
ˆ

22


 , 

respectively, where  



N

i

ixx XXS
1

2 ,   YYXXS i

N

i

ixy 
1

,  and  



N

i

iyy YYS
1

2
. 

In the case the two methods don’t have comparable variability, the difference in 

variability can be included in the slope estimation procedure using the precision ratio λ 

defined by 22

   , where 2

  and 2

  are the precision parameters for the two 

methods or assays. The equation for the estimation of the slope becomes: 
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The variance of  ̂log a  was estimated using the sampling properties of principal 

components. Here the parameter a represents the base of logarithm transformation. An 

equivalent estimate of the slope, ̂ , is given by 1112 ee , where e11 and e12 are the 

components of the first eigenvector (e1) of the variance/covariance matrix of Xi and Yi . 

The variance/covariance matrix of e11 and e12 is given by: 
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where k (k = 1, 2) is the k eigenvalue and e2 is the second eigenvector of the 

variance/covariance matrix of Xi and Yi. Thus, the approximate variance of  ̂log a  is 

obtained using the delta method: 
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The 95% confidence limits for the concordance slope was computed as 
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The variance of the concordance intercept was estimated using the delta method as  
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 , where  is the correlation between the results 

generated by both laboratories, 2s is the regression mean square error (MSE),
X

s is the  
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standard error of the mean, 
̂

s is the standard error of the slope, 

and  
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  . The 95% confidence limits were given by 

)ˆvar(tˆ
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2.2. Agreement 

Agreement shall be estimated using the constant bias according to the formula 100% x 

( 1Da ), where D  is the mean difference of the loga -transformed results of the 2 

laboratories.  

3. Results 

Hypothetical examples were used to illustrate the proposed statistical methodology. 

When a company operates laboratories around the world, it is appropriate to compare 

results generated by any two laboratories performing the same test. If test results are 

comparable clinical testing can be conducted in either laboratory. For each assay, a panel 

of 30 to 60 samples was selected based upon the reported titer and sent to the laboratories 

that would perform the assay. Each sample was tested in 3 to 6 independent runs by 

qualified technicians in each laboratory. The GMT of the 3 to 6 independent runs was 

used for statistical analysis.  

3.1. Example 1 

In this example, radioimmunoassay (RIA) test results generated by two laboratories that 

tested the same panel of samples were compared to assess the comparability of results.  

The concordance slope estimated was 1.03 and the calculated 95% confidence interval 

for was 1.00 -1.07. A suggested acceptance criterion for the concordance slope was “the 

95% confidence interval for concordance slope is within 0.8 – 1.25”, which was verified 

here. The agreement between the results generated by the two laboratories for the 

radioimmunoassay was estimated using the constant bias. The estimate (95% confidence 

interval) was –11.31 (-17.26, -4.94). The acceptance of this result will depend on the 

level of bias accepted by the laboratory and historically observed difference between the 

laboratories. The result obtained was within the variability of the test and should be 

acceptable. The 4-fold rise was 4.17 with 95% CI of (3.89, 4.39), which showed that the 

4-fold rise in Lab 1 was not significantly different from 4-fold rise in Lab 2 as the 95% 

CI contained 4. 

The statistical linear relationship between the results generated by both laboratories is 

displayed graphically in Figure 1, in log10 scale. The line of perfect concordance (slope=1 and 

intercept=0) is represented by the dashed blue line. The parameter estimates are given in Table 1. 
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Figure 1: Statistical linear relationship of radioimmunoassay measured in two 

laboratories 

 

Table 1: Concordance parameter estimates for Radioimmunoassay tests 

 

Parameter Estimate 95% LCL 95% UCL 

Concordance Slope 1.03 1.00 1.07 

Intercept -0.06 -0.10 -0.03 

Agreement (%) -11.31 -17.26 -4.94 

Four-Fold Rise 4.17 3.98 4.39 

 

3.2. Example 2 

The statistical linear relationship of two laboratories testing quantal assay is displayed 

graphically in Figure 2. Due to the nature of the assay, the GMT results were log2-

transformed prior to statistical analysis. The concordance slope estimated was 1.00 with 

the 95% confidence interval 0.95- 1.05. However, a constant bias was observed across 

the range of the assay.  

The Agreement estimated was 87.10% with 95% confidence interval of (70.85%, 

104.89%). These results translate in fold difference estimate of 1.87 with 95% confidence 

interval of (1.71, 2.05). This shows that on average the results generated by the 2 

laboratories are within a single two-fold dilution. 

Figure 2: Statistical Linear Relationship between two Laboratories for Functional Assay 
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Table 2: Parameter Estimates 

 

Parameter Estimate 95% LCL 95% UCL 

Concordance Slope 1.00 0.95 1.05 

Intercept 0.90 0.62 1.18 

Agreement (%) 87.10 70.85 104.89 

Four-Fold Rise 4.00 3.89 4.29 

 

 

4. Conclusion 

 

In general, the agreement measurement can be used when the interest is in assessing the 

constant bias between the two laboratories. The fold rise is mostly useful when increased 

in response is of interest.  

For the comparison of serology results produced in different laboratories, the traditional 

statistical model (linear regression, etc) can easily misrepresent the data due to the 

violations of assumptions. Statistical linear relationship established by concordance 

model (errors in variables) shall be used as the alternative in clinical program to bridge 

the serology data between the laboratories. A ‘perfect concordance’ (example 3.1) 

indicates that individual result can be used directly in a clinical program regardless the 

laboratory where the sample has been tested. If the concordance analysis shows two 

laboratories have significant constant bias (example 3.2), the concordance equation can 

be used to reassess clinical thresholds.  
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