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Abstract 

The failure of the F – test statistic and the Kruskal – Wallis (KW) H – test statistic to 

immediately identify the treatments that are responsible for the rejection of the null hypothesis of 

no difference can be seen as a shortcoming. However, very many post – hoc (i.e., multiple 

comparison) methods have been introduced to tackle this deficiency. Some of these also have 

their limitations especially when the power of the tests is considered since the error rates may 

differ. Statisticians have been living with these shortcomings and limitations. The work in this 

paper is an attempt at dealing with the shortcomings of the F – test, the H – test as well as the 

Friedman‟s test for the one – way and two – way ( or the single factor and two factors) analysis 

of variance. 

 

Keywords: F – test statistic, Friedman‟s test statistic, Kruskal – Wallis H – test statistic, WN – 

statistic. 

 

1. Introduction 

Consider a client (or investigator) faced with the problem of the one – or two – way analysis of 

variance of a sample obtained from an experiment. Suppose the client approached a statistician 

to do the analysis. If the null hypothesis of no difference is rejected in either the one – or two – 

way analysis of variance experiment, the statistician may stop at that point. Nonetheless, the 

client‟s problem is not really solved until the statistician identifies the treatments that are 

significantly different from others. It is against this background that we develop the WN – 

statistic (or simply the WN). The WN –statistic is robust in that it does not only give the same 

decision as the F – test, the KW H – test and the Friedman‟s test under normal circumstances, but 

also goes beyond the existing shortcomings of the F – test, the KW H – test and the Friedman‟s 

test statistics.  
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2. Development of the WN – Statistic 

A nonparametric multiple-testing procedure that takes into consideration all observations of the 

combined 2p  treatments in a one-way ANOVA problem is developed and called the WN –

statistic. The procedure is based on functions of ranks.  In a sense, the method stands out as a 

nonparametric analogue of the Duncan multiple range test as well as a generalization of the 

nonparametric Tukey‟s test.  The distribution (both the exact and the asymptotic) of the WN test 

statistic is given in section 2.1.  The asymptotic relative efficiency for the WN statistic is 

theoretically established to be 


3
, which is about 95.5% when compared with the Tukey‟s test 

(see Aiyelo and Ogbonmwan, 1994). 

 

Both the empirical and theoretical substantiation of the conjecture that the WN-statistic is 

conservative for unbalanced sample size cases are considered and proved.  Finally, the exact 

(permutation) distribution of the WN-statistic is established.  This leads to the development of a 

statistical table for the WN-test statistic. 

 

2.1. Methodology 

For a class of rank order statistics, let  
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Consider the rank order statistic,  
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 smallest observation (in the combined ranking of all the N 

observations) is from the i
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 sample and 0
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Z   otherwise. Then, after some algebra, we 

derive the test statistic: 
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Further simplification of equation (2.4) yields 
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2.2 Distribution of the WN-statistic 

2.2.1 Exact distribution of WN 

For small samples, no suitable algebraic expression is feasible for the distribution of WN. 

However, a permutation method of evaluating the exact distribution of WN is realizable.  This 

involves a lot of computational complexities. Suppose a realized data set of the form 
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is composed of N independent identically distributed random variables.  Then, there exist 




p

i

i
n

N

1

)!(

!
  possible permutations of the N variables partitioned into p-subsets of size 

),...2,1( pini  .  Consider the set of all these permutations. For each, compute the value of 

WN. Then the probability of the different values of WN which eventually yields the exact 

permutation of WN can be obtained.  
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2.2.2   Asymptotic distribution of WN 

For large samples, consider the following theorem: 

 

Theorem 1 (Ogbonmwan, 1983): Assuming that equations (2.1 – 2.6) are satisfied then under 

the null hypothesis that: 
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where 
)( t

p
  is the cdf of the sample range in a sample of size p drawn from a standardized 

normal distribution. 

 

From the proof of the theorem, we conclude that for a pre-assigned level of significance 
0

 , 

   00, 1)(   pNN WWprob  

where )(
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W  is the upper %100 0  point of the exact null distribution of WN. 

 

2.3 Testing procedure 

The multi-sample testing procedure is formulated as follows: 

1. For a realized data set, compute WN. 

2. Compute the value of )(
0,
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W  corresponding to the pre-assigned level of significance, 
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of upper %100 0  point of the exact null distribution of )( t

p
 . For small sample values, read the 

value in Ogbonmwan and Odiase (2004). 

3. Regard the p treatment to be significantly different if )(
0,


pNN

WW  . 

4. If the null hypothesis of “no difference” between the p treatments is rejected, then test 

using steps (1), (2) and (3) above, the sets of 2),...,2(),1(  pp  treatments all taken from the p 

– treatments.  If any set of pk   treatment is found not to be significantly different, then any 

subset of the k treatments is also not significantly different. 
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2.4 Computational analysis and consideration for ties 

This section contains the computational aspects in the use of the WN – statistics with and without 

ties in the samples as well as the case of unbalanced sample size. 

 

2.4.1  Without ties 

When ties do not exist in the distribution, 
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2.4.2 With ties 

If t is the number of tied observations in a group then 
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By substitution, AN simplifies to: 
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Hence WN becomes: 








































)()(
)1(

)1(12
2

1

2

2

max

,1

**

jNiNpjiN
xhxh

TNN

NnN
W  

 

2.5. The case of unbalanced sample size 

For unbalanced sample cases, WN could be modified by replacing it with: 
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Both 0

N
W  and 

00

N
W  have been shown to be empirically and theoretically conservative 

(Ogbonmwan and Ozobokeme, 1997; Ogbonmwan and Aitusi, 1999). 

 

In order to make the WN statistic to be a complete test statistics, a statistical table is developed 

for it.  Ogbonmwan and Odiase (2004) gave the computer Algorithms for the development of the 

statistical table for the WN statistics. 

 

3. The two – way ANOVA 

This section focuses on the WN – test for two factors with no interactions. 

  

3.1 The WN – test for two factors ANOVA (with no interactions) 

Consider the case in which factor A (rows) consists of m levels and factor B (columns) consists 

of n levels so that we have exactly one observation per cell. In this case, there are altogether N = 

mn experimental units. Thus, xij is considered as the response for the i
th

 treatment in the j
th

 block 

for i = 1,2,3, … ,m and j = 1,2,3, … , n.  
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From the works of Chernoff and Savage (1958) and Puri (1964), we have that both  
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More so, for the treatments (Factor A) 
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For the blocks (Factor B) 
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Theorem 2: Assuming that equations (3.1 – 3.7) are satisfied then under the null hypothesis 

that: 
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where 
)( t

p
  is the cdf of the sample range in a sample of size p drawn from a standardized 

normal distribution. 

 

Proof: 

The proof follows the adaptation of the proof of Theorem 1. 

 

3.2. Testing procedure 

The testing procedure is analogous to that of the WN - test for the one – way ANOVA. Thus, we 

simply replace WN by 
Na

W  or 
bN

W


 in sub-section 2.3. 

 

4. Conclusion 

In brief, this paper knits together several published works of the author and some of his students. 

It starts with the pioneering work on the theory of WN – statistic by the author (Ogbonmwan, 

1983) and then navigates through the consideration of efficiency, the numerical substantiation, 

the conjecture of being conservative and ending with the computer algorithm for the 



9 
 

development of a Statistical Table for it. Thus, this paper is a formal presentation of the WN – 

statistic as a multisample testing procedure. In sum, the WN – statistic is designed to meet the 

needs of clients who desire to know the treatments that differ from the others when the null 

hypothesis of „„no difference‟‟ is rejected. It is highly efficient and handles both balanced and 

unbalanced cases. 
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