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Course Outline

Session 1 - Generalized linear models

• Introduction

• Motivating examples

• History

• Generalized linear models

• Definition of generalized linear models

• Model fitting

• Inferential aspects

Session 2: Normal models

• Summary

• Examples

• Residual analysis and diagnostics

• Box-Cox transformation

• Transform or link

Session 3: Binary and binomial data

• Summary – Binomial models
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• Analysis of dose-response models

• Examples

• Residuals for glm’s

Session 4: Poisson and multinomial data

• Summary – Poisson models

• Example

• Dilution assays

• 2-way contingence tables

• Simple 2-way table

• Binomial logit and Poisson log-linear
models

• Multinomial response data

Session 5: Overdispersion

• Overdispersion in glm’s: causes and
consequences; examples

• Overdispersion models:

– mean-variance models
– two-stage models

• Estimation methods

• Examples

• Extended overdispersion models
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Introduction

• Agricultural Science - diferent types of data:
continuous and discrete.

• Model selection - important part of the
research: search for a simple model which
explains well the data (Parsimony).

• All models envolve:

– a systematic component - regression,
analysis of variance, analysis of
covariance;

– a random component - distributions;

– a link between systematic and random
components.
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Motivating examples

Melon organogenesis

Eldorado AF-522

Replicates 0.0 0.1 0.5 1.0 0.0 0.1 0.5 1.0

1 0 0 7 8 0 0 4 7

2 0 2 8 8 0 2 7 8

3 0 0 8 8 0 0 7 8

4 0 1 5 8 0 1 8 8

5 0 0 7 5 0 1 8 7

Considerations

• Response variable: Y – number of explants (cuts of
cotyledon) regenerated out of m = 8 explants.

• Distribution: Binomial.

• Systematic component: factorial 2× 4 (2 varieties, 4
concentrations of BAP(mg/l)), completely
randomized tissue culture experiment.

• Aim: to see how organogenesis is affected by variety
and concentration of BAP.
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Figure 1. Observed proportions

Figure 1: Melon organogenesis. Scatterplot
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Carnation meristem culture

0,0 0,1 0,3 0,5 1,0 2,0

b c v b c v b c v b c v b c v b c v

1 2.5 0 3 5.5 1 5 4.8 1 9 2.8 0 10 2.0 1 12 1.7 1

2 2.5 0 2 4.3 1 5 3.0 1 10 2.3 1 8 2.3 1 15 2.5 1

1 3.0 0 6 3.3 0 4 2.7 0 8 2.7 1 12 2.0 1 15 2.3 1

2 2.5 1 3 4.3 0 4 3.1 1 11 3.2 0 13 1.0 1 12 1.5 1

1 4.0 0 4 5.4 0 5 2.9 0 8 2.9 1 14 2.8 1 13 1.7 1

1 4.0 0 3 3.8 1 6 3.3 1 8 1.5 1 14 2.0 1 16 2.0 1

2 3.0 0 3 4.3 1 6 2.1 1 8 2.5 0 14 2.7 1 17 1.7 1

1 3.0 0 4 6.0 1 5 3.7 1 8 2.8 0 9 1.8 1 15 2.0 1

1 5.0 0 3 5.0 1 4 3.8 1 8 1.8 1 13 1.8 1 17 2.0 1

1 4.0 0 2 5.0 0 5 3.8 1 11 2.0 0 9 2.1 1 14 2.3 1

1 2.0 1 3 4.5 0 6 3.3 0 9 2.7 1 15 1.3 1 16 2.5 1

1 4.0 0 3 4.0 1 6 2.6 1 12 1.8 1 15 1.2 1 21 1.3 1

2 3.0 0 4 3.3 0 5 2.3 0 12 2.3 1 16 1.2 1 18 1.3 1

2 3.5 1 3 4.3 1 4 3.6 1 10 1.5 1 9 1.0 1 16 1.8 1

1 3.0 0 3 4.5 1 3 4.8 1 10 1.5 1 13 1.7 1 18 1.0 1

2 3.0 0 2 3.8 0 4 2.0 0 7 1.0 1 14 1.7 1 20 1.3 1

2 5.5 0 3 4.7 1 6 1.7 0 8 3.0 1 16 1.3 1 22 1.5 1

1 3.0 0 4 2.2 0 5 2.5 0 12 2.0 1 13 1.8 1 20 1.3 1

1 2.5 0 2 3.8 1 5 2.0 0 9 3.0 1

1 2.0 0 3 5.0 0 5 2.0 0
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Figure 2: Carnation meristem culture. Scatterplots
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Rotenon toxicity

Dose (di) mi yi

0.0 49 0

2.6 50 6

3.8 48 16

5.1 46 24

7.7 49 42

10.2 50 44

• Response variable: Yi – number of dead
insects out of mi insects (Martin, 1942).

• Distribution: Binomial.

• Systematic component: regression model,
completely randomized experiment.

• Aim: Lethal doses.
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Figure 3: Rotenon - Scatterplot
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Germination of Orobanche seed

O. aegyptiaca 75 O. aegyptiaca 73

Bean Cucumber Bean Cucumber

10/39 5/6 8/16 3/12

23/62 53/74 10/30 22/41

23/81 55/72 8/28 15/30

26/51 32/51 23/45 32/51

17/39 46/79 0/4 3/7

10/13

Considerations

• Response variable: Yi – number of
germinated seeds out of mi seeds (Crowder,
1978).

• Distribution: Binomial.

• Systematic component: factorial 2× 2 (2
species, 2 extracts), completely randomized
experiment.

• Aim: to see how germination is affected by
species and extracts.

• Problem: overdispersion.
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Figure 4: Orobanche - Boxplot



Session 1 13'

&

$

%

Apple tissue culture

• 4x2 factorial micropropagation experiment of
the apple variety Trajan – a ’columnar’
variety.

• Shoot tips of length 1.0-1.5 cm were placed
in jars on a standard culture medium.

• 4 concentrations of cytokinin BAP added

High concentrations of BAP often inhibit root
formation during micropropagation of apples, but
maybe not for ’columnar’ varieties.

• Two growth cabinets, one with 8 hour
photoperiod, the other with 16 hour.

Jars placed at random in one of the two cabinets

• Response variable: number of roots after 4
weeks culture at 22◦C.
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Photoperiod
8 16

BAP (µM) 2.2 4.4 8.8 17.6 2.2 4.4 8.8 17.6

No. of roots
0 0 0 0 2 15 16 12 19
1 3 0 0 0 0 2 3 2
2 2 3 1 0 2 1 2 2
3 3 0 2 2 2 1 1 4
4 6 1 4 2 1 2 2 3
5 3 0 4 5 2 1 2 1
6 2 3 4 5 1 2 3 4
7 2 7 4 4 0 0 1 3
8 3 3 7 8 1 1 0 0
9 1 5 5 3 3 0 2 2
10 2 3 4 4 1 3 0 0
11 1 4 1 4 1 0 1 0
12 0 0 2 0 1 1 1 0
>12 13,17 13 14,14 14

No. of shoots 30 30 40 40 30 30 30 40
Mean 5.8 7.8 7.5 7.2 3.3 2.7 3.1 2.5

Variance 14.1 7.6 8.5 8.8 16.6 14.8 13.5 8.5
Overdispersion index 1.42 -0.03 0.13 0.22 4.06 4.40 3.31 2.47
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Considerations about the data

• Many zeros for 16 hour photoperiod

• Overdispersion for 16 hour photoperiod
Is this caused by excess zeros?

• Not much overdispersion for the 8 hour
photoperiod.
mean≈variance for concentrations 1, 2 and 4
of BAP.

• For the 8 hour photoperiod the lowest
concentration has smallest mean and largest
variance

• For the 16 hour photoperiod the conclusion is
not so clear cut.
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History

The developments leading to the general overview
of statistical modelling, known as generalized
linear models, extend over more than a century.
This history can be traced very briefly as follows
(McCullagh & Nelder, 1989, Lindsey, 1997):

• multiple linear regression – a normal
distribution with the identity link, µi = β′

xi

(Legendre, Gauss, early XIX-th century);

• analysis of variance (ANOVA) designed
experiments – a normal distribution with the
identity link, µi = β′

xi (Fisher, 1920 to
1935);

• likelihood function – a general approach to
inference about any statistical model (Fisher,
1922);

• dilution assays – a binomial distribution with
the complementary log-log link,
log[− log(1− µi/mi)] = β′

xi (Fisher, 1922);

• exponential family – a class of distributions
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with suficient statistics for the parameters
(Fisher, 1934);

• probit analysis – a binomial distribution with
the probit link, Φ−1(µi/mi) = β′

xi (Bliss,
1935);

• logit for proportions – a binomial distribution
with the logit link, log µi

mi−µi
= β′

xi

(Berkson, 1944, Dyke & Patterson, 1952);

• item analysis – a Bernoulli distribution with
the logit link, log µi

1−µi
= β′

xi (Rasch, 1960);

• log linear models for counts – a Poisson
distribution with the log link, logµi = β′

xi

(Birch, 1963);

• regression models for survival data - – an
exponential distribution with the reciprocal or
the log link, 1

µi
= β′

xi or logµi = β′
xi

(Feigl & Zelen, 1965, Zippin & Armitage,
1966, Gasser, 1967);

• inverse polynomials – a gamma distribution
with the reciprocal link, 1

µi
= β′

xi (Nelder,

1966).
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Generalized Linear Models (glms)

Unifying framework for much statistical
modelling.

First introduced by Nelder & Wedderburn (1972)
as an extension to the standard normal theory
linear model.

• single response variable Y

• explanatory variables x1, x2, . . . , xp,
(x1 ≡ 1)

• random sample: n observations (yi,xi),
where xi = (x1i, x2i, . . . , xpi)

T

For more details see, for example:

• McCullagh & Nelder (1989) – theory,
applications

• Dobson (2002) – a simple introduction.

• Aitkin et al (2009) – practical application of
glms using R
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Definition of glm

Three components of a generalized linear model
are:

• independent random variables Yi,
i = 1, . . . , n, from a linear exponential family
distribution with means µi and constant scale
parameter φ,

f(y) = exp

{

yθ − b(θ)

φ
+ c(y, φ)

}

where µ = E[Y ] = b′(θ) and
Var(Y ) = φb′′(θ).

• a linear predictor vector η given by

η = Xβ

where β is a vector of p unknown parameters
and X = [x1,x2, . . . ,xn]

T is the n× p
design matrix;

• a link function g(·) relating the mean to the
linear predictor, i.e.

g(µi) = ηi = x
T
i β
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Table 1: Identifiers for exponencial family distribu-
tions

Distribution a(φ) θ b(θ) c(y;φ) µ(θ) V (µ)

N(µ, σ2) σ2 µ
θ2

2
−

1

2





y2

σ2
+ log (2πσ

2)



 θ 1

P(µ) 1 log µ eθ − log y! eθ µ

B(m,π) 1 log

(

π

1 − π

)

m log (1 + eθ) log

(

m

my

)

eθ

1 + eθ

1

m
µ(m − µ)

NB(k) 1 log

(

µ

µ + k

)

−k log (1 − eθ) log

[

Γ(k + y)

Γ(k) y!

]

k
eθ

1 − eθ
µ

(

µ

k
+ 1

)

G(µ, ν) ν−1
−

1

µ
− log (−θ) ν log (νy) − log y − log Γ(ν) −

1

θ
µ2

IG(µ, σ2) σ2
−

1

2µ2
−(−2θ)

1

2 −

1

2

[

log (2πσ
2
y
3) +

1

σ2y

]

(−2θ)
−

1

2 µ3
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Canonical link functions for some distributions

Distribution Canonical link functions

Normal Identity: η = µ

Poisson Logaritmic: η = log(µ)

Binomial Logistic: η = log

(

π

1− π

)

= log

(

µ

m−

Gamma Reciprocal: η =
1

µ

Inverse Gaussian Reciprocal squared: η =
1

µ2
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Normal Models

Continuous response variable – Y
Normal distribution, constant variance

Yi ∼ N(µi, σ
2), i = 1, . . . , n

µi = β0 + β1x1i + . . .+ βpxpi = βT
xi

• Regression models
continuous explanatory variables
– fitting, testing, model checking

• Analysis of variance
categorical explanatory variables
– ANOVA - balanced designs
– regression - general unbalanced designs

• Analysis of covariance
mixture of continuous and categorical
explanatory variables
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Binomial regression models

Yi counts of successes out of samples of size mi,
i = 1, . . . , n.
Writing

E[Yi] = µi = miπi,

a glm models the expected proportions πi in
terms of explanatory variables xi

g(πi) = β′
xi,

For Yi ∼ Bin(mi, πi) the variance function is

Var(Yi) = miπi(1− πi).

the canonical link function is the logit

g(µi) = log

(

µi

mi − µi

)

= log

(

πi

1− πi

)

= ηi

Other common choices are

• probit g(µi) = Φ−1(µi/mi) = Φ−1(πi)

• complementary log-log (CLL) link

g(µi) = log{− log(1− πi)}.
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Poisson regression models

If Yi, i = 1, . . . , n, are counts with means µi,
the standard Poisson model assumes that
Yi ∼ Pois(µi) with variance function

Var(Yi) = µi.

The canonical link function is the log

g(µi) = log(µi) = ηi,

For different observation
periods/areas/volumes:

Yi ∼ Pois(tiλi)

Taking a log-linear model for the rates,

log(λi) = x
T
i β

results in the following log-linear model for the
Poisson means

log(µi) = log(tiλi) = log(ti) + x
T
i β,

where the log(ti) is included as a fixed term, or
offset, in the model.
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Estimation and model fitting

• Maximum likelihood estimation.

• Estimation algorithm (Nelder & Wedderburn, 1972)
– Iterativelly weighted least squares (IWLS)

XTWXβ = XTWz

where

X = [x1,x2, . . . ,xn]T is a design matrix n× p,

W = diag{Wi} – depends of the prior weights,
variance function (distribution) and link function

Wi =
1

V (µi)

(

dµi
dηi

)2

β – parameter vector p× 1

z – a vector n× 1 (adjusted response variable) –
depends on y and link function

zi = ηi + (yi − µi)
dηi
dµi



Session 1 26'

&

$

%

Inferential aspects

Measures of discrepancy:

Deviance

S =
D

φ
= −2[log L(µ̂,y)− log L(y,y)]

where L(µ̂,y) e L(y,y) are the likelihood
function values for the current and saturated
models

Generalized Pearson X2

X2 =
∑ (yi − µ̂i)

2

V (µ̂i)

• In general, comparisons involve nested
models and deviance differences (Analysis of
deviance).

• Many interesting comparisons involve
non-nested models

• Use of Akaike Information Criterion (AIC) or
Bayes Information Criterion (BIC) for model
selection

AIC = −2 log L+ 2 (number of fitted parameters)
BIC = −2 log L+ log n (number of fitted parameters)
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• When the dispersion parameter is unknown,
it may be estimated by the Pearson Estimator

φ̂ =
1

n− p

n
∑

i=1

wi(yi − µ̂i)
2

V (µ̂i)

where µ̂i = g−1(β̂
′

xi) is the ith fitted value.

• Some computer packages estimate φ by the
deviance estimator D(β̂)/(n− p); but it
cannot be recommended because of problems
with bias and inconsistency in the case of a
non-constant variance function.

• For positive data, the deviance may also be
sensitive to rounding errors for small values
of yi.

• The asymptotic variance of β̂ is estimated by
the inverse (Fisher) information matrix,
giving

Var(β̂) = K = φ(XT
WX)−1,

where W is calculated from β̂.

• The standard error se(β̂j) is calculated as the
square-root of the jth diagonal element of
this matrix, for j = 1, . . . , p
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• When φ is known, a 1− α confidence interval
for βj is defined by the endpoints

β̂j ± se(β̂j)z1−α/2

where z1−α/2 is the 1− α/2 standard normal
quantile.

• For φ unknown, we replace φ by φ̂ in K and
a 1− α confidence interval for βj is defined
by the endpoints

β̂j ± se(β̂j)t(1−α/2)(n− p)

where t(1−α/2)(n− p) is the 1− α/2 quantile
of Student’s t distribution with n− p degrees
of freedom.
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Analysis of Deviance – Goodness of fitting and model selection

• Analysis of deviance is the method of
parameter inference for generalized linear
models based on the deviance, generalizing
ideas from ANOVA, and first introduced by
Nelder and Wedderburn (1972).

• The situation is similar to regression analysis,
in the sense that model terms must be
eliminated sequentially, and the significance
of a term may depend on which other terms
are in the model.

• The deviance D measures the distance
between y and µ̂, given by

S =
D(β̂)

φ
= −2[log L(µ̂, y)−log L(y, y)] = 2φ−1

n
∑

i=1

wi[yi(θ̃i−θ̂

where L(µ̂, y) and L(y, y) are the likelihood
function values for the current and saturated
models, θ̃i = θ(yi), θ̂i = θ(µ̂i) and

D(β̂) =
∑n

i=1wid(yi; µ̂i).
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Deviance for some models

Model Deviance

Normal Dp =

n
∑

i=1

(yi − µ̂i)
2

Binomial Dp = 2
n
∑

i=1

[

yi log

(

yi
µ̂i

)

+ (mi − yi)

Poisson Dp = 2
n
∑

i=1

[

yi log

(

yi
µ̂i

)

+ (µ̂i − yi)

Negative Binomial Dp = 2
n
∑

i=1

[

yi log

(

yi
µ̂i

)

+ (yi + k) log

Gamma Dp = 2

n
∑

i=1

[

log

(

µ̂i

yi

)

+
yi − µ̂i

µ̂i

]

Inverse Gaussian Dp =
n
∑

i=1

(yi − µ̂i)
2

yiµ̂2
i
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• We consider separately the cases where φ is
known and unknown, but first we introduce
some notation.

• Let M1 denote a model with p parameters,
and let D1 = D(β̂) denote the minimized
deviance under M1

• Let M2 denote a sub-model of M1 with
q < p parameters, and let D2 denote the
corresponding minimized deviance, where
D2 ≥ D1
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Known dispersion φ parameter

• Mainly relevant for discrete data, for which,
in general, φ = 1.

• The deviance D1 is a measure of
goodness-of-fit of the model M1; and is also
known as the G2 statistic in discrete data
analysis.

• A more traditional goodness-of-fit statistic is
Pearson’s X2 statistic

X2 =
∑ wi(yi − µ̂i)

2

V (µ̂i)

• Asymptotically, for large w the statistics D1

and X2 are equivalent and distributed as
χ2(n− p) under M1.

• Various numerical and analytical
investigations have shown that the limiting
χ2 distribution is approached faster for the
X2 statistic than for D1, at least for discrete
data.
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• A formal level α goodness-of-fit test for M1

is obtained by rejecting M1 if
X2 > χ2

(1−α)(n− p)

• This test may be interpreted as a test for
overdispersion.

• The fit of a model is a complex question,
cannot be summarized in a single number –
supplement with an inspection of residuals.



Session 1 34'

&

$

%

• To test the sub-model M2 with q < p we use
the log likelihood ratio statistic

D2 −D1 ∼ χ2(p− q)

• M2 is rejected at level α if
D2 −D1 > χ2

(1−α)(p− q)

• In the case where φ 6= 1 we use the scaled
deviance D/φ instead of D; and the scaled
Pearson statistic X2/φ instead of X2 and so
on.
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Unknown dispersion φ parameter

• The dispersion parameter is usually unknown
for continuous data

• In the discrete case we may prefer to work
with unknown dispersion parameter, if
evidence of overdispersion has been found in
the data.

• There is no formal goodness-of-fit test
available based on X2 – the fit of the model
M1 to the data must be checked by residual
analysis.

• X2 is used to estimate the dispersion
parameter

φ̂ =
1

n− p

∑ wi(yi − µ̂i)
2

V (µ̂i)

where µ̂i = g−1(β̂
′

xi) is the ith fitted value.

• To test the sub-model M2 with q < p
parameters inference may be based on
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F−statistic,

F =
(D2 −D1)/(p− q)

φ̂
∼ F (p− q, n− p)

• We reject M2 at level α if
F > F1−α(p− q, n− p)
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Table 2: Deviance Table – An example.

Model DF Deviance Deviance Diff. DF Diff. Meaning

Null rab− 1 D1

D1 −DA a− 1 A ignoring

A a(rb− 1) DA

DA −DA+B b− 1 B including

A+B a(rb− 1)− (b− 1) DA+B

DA+B −DA∗B (a− 1)(b− 1) Interaccion

included A and

A+B+A.B ab(r − 1) DA∗B

DA∗B ab(r − 1) Residual

Saturated 0 0
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Residual analysis

• Pearson residual

rPi =
yi − µ̂i
√

V (µ̂i)

reflect the skewness of the underlying
distribution.

• Deviance residual

rDi = sign(yi − µ̂i)
√

d(yi; µ̂i)

which is much closer to being normal than
the Pearson residual, but has a bias
(Jorgensen, 2011).

• Modified deviance residual (Jorgensen,
1997)

r∗Di = rDi +
φ

rDi
log

rWi

rDi

where rWi is the Wald residual defined by

rWi = [g0(yi)− g0(µi)]
√

V (yi)

where g0 is the canonical link.
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• All those residuals have approximately mean
zero and variance φ(1− hi), where hi is the
ith diagonal element of the matrix
H = W

1/2
X(XT

WX)−1
X

T
W

1/2.

• Use standardized residuals such as
r∗Di(1− hi)

1/2, which are nearly normal with
variance φ

• Plot residuals against the fitted values – to
check the the proposed variance function

• Normal Q-Q plot (or normal Q-Q plot with
simulated envelopes) for the residuals – to
check the correctness of the distributional
assumption
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R commands for GLM

glm(resp ~ linear predictor + offset(of), weights = w,

family=familyname(link ="linkname" ))

The resp is the response variable y. For a binomial
regression model it is necessary to create:

resp<-cbind(y,n-y)

The possible familes (”canonical link”) are:

binomial(link = "logit")

gaussian(link = "identity")

Gamma(link = "inverse")

inverse.gaussian(link = "1/mu^2")

poisson(link = "log")

quasi(link = "identity", variance = "constant")

quasibinomial(link = "logit")

quasipoisson(link = "log")

The default family is the gaussian family and default links
are the canonical links (don’t need to be declared). Other
possible links are ”probit”, ”cloglog”, ”cauchit”,
”sqrt”,etc. To see more, type

? glm
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