Generalized Linear Models and Extensions

Clarice Garcia Borges Demétrio

ESALQ/USP
Piracicaba, SP, Brasil

email: Clarice.demetrio@usp.br

March 2013

International Year of Statistics http://www.statistics2013.org/

IBS address: http://www.biometricsociety.org IBC2014 in Florence, Italy, 6-11, July, 2014

Course Outline

Session 1 - Generalized linear models

- Introduction
- Motivating examples
- History
- Generalized linear models
- Definition of generalized linear models
- Model fitting
- Inferential aspects

Session 2: Normal models

- Summary
- Examples
- Residual analysis and diagnostics
- Box-Cox transformation
- Transform or link

Session 3: Binary and binomial data

- Summary - Binomial models
- Analysis of dose-response models
- Examples
- Residuals for glm's

Session 4: Poisson and multinomial data

- Summary - Poisson models
- Example
- Dilution assays
- 2-way contingence tables
- Simple 2-way table
- Binomial logit and Poisson log-linear models
- Multinomial response data

Session 5: Overdispersion

- Overdispersion in glm's: causes and consequences; examples
- Overdispersion models:
- mean-variance models
- two-stage models
- Estimation methods
- Examples
- Extended overdispersion models

Introduction

- Agricultural Science - diferent types of data: continuous and discrete.
- Model selection - important part of the research: search for a simple model which explains well the data (Parsimony).
- All models envolve:
- a systematic component - regression, analysis of variance, analysis of covariance;
- a random component - distributions;
- a link between systematic and random components.

Motivating examples

Melon organogenesis

Eldorado					AF-522			
Replicates	0.0	0.1	0.5	1.0	0.0	0.1	0.5	1.0
1	0	0	7	8	0	0	4	7
2	0	2	8	8	0	2	7	8
3	0	0	8	8	0	0	7	8
4	0	1	5	8	0	1	8	8
5	0	0	7	5	0	1	8	7

Considerations

- Response variable: Y - number of explants (cuts of cotyledon) regenerated out of $m=8$ explants.
- Distribution: Binomial.
- Systematic component: factorial 2×4 (2 varieties, 4 concentrations of $\operatorname{BAP}(\mathrm{mg} / \mathrm{I}))$, completely randomized tissue culture experiment.
- Aim: to see how organogenesis is affected by variety and concentration of BAP.

Figure 1. Observed proportions
Figure 1: Melon organogenesis. Scatterplot

Carnation meristem culture

Figure 2: Carnation meristem culture. Scatterplots

Rotenon toxicity		
Dose $\left(d_{i}\right)$	m_{i}	y_{i}
0.0	49	0
2.6	50	6
3.8	48	16
5.1	46	24
7.7	49	42
10.2	50	44

- Response variable: Y_{i} - number of dead insects out of m_{i} insects (Martin, 1942).
- Distribution: Binomial.
- Systematic component: regression model, completely randomized experiment.
- Aim: Lethal doses.

Figure 3: Rotenon - Scatterplot

Germination of Orobanche seed

O. aegyptiaca 75			
Bean	Cucumber	O. aegyptiaca 73	
$10 / 39$	$5 / 6$	$8 / 16$	Cucumber
$23 / 62$	$53 / 74$	$10 / 30$	$22 / 41$
$23 / 81$	$55 / 72$	$8 / 28$	$15 / 30$
$26 / 51$	$32 / 51$	$23 / 45$	$32 / 51$
$17 / 39$	$46 / 79$	$0 / 4$	$3 / 7$
	$10 / 13$		

Considerations

- Response variable: Y_{i} - number of germinated seeds out of m_{i} seeds (Crowder, 1978).
- Distribution: Binomial.
- Systematic component: factorial 2×2 (2 species, 2 extracts), completely randomized experiment.
- Aim: to see how germination is affected by species and extracts.
- Problem: overdispersion.

Species*Extract

Figure 4: Orobanche - Boxplot

Apple tissue culture

- 4×2 factorial micropropagation experiment of the apple variety Trajan - a 'columnar' variety.
- Shoot tips of length $1.0-1.5 \mathrm{~cm}$ were placed in jars on a standard culture medium.
- 4 concentrations of cytokinin BAP added

High concentrations of BAP often inhibit root formation during micropropagation of apples, but maybe not for 'columnar' varieties.

- Two growth cabinets, one with 8 hour photoperiod, the other with 16 hour.

Jars placed at random in one of the two cabinets

- Response variable: number of roots after 4 weeks culture at $22^{\circ} \mathrm{C}$.

Considerations about the data

- Many zeros for 16 hour photoperiod
- Overdispersion for 16 hour photoperiod Is this caused by excess zeros?
- Not much overdispersion for the 8 hour photoperiod.
mean \approx variance for concentrations 1,2 and 4 of BAP.
- For the 8 hour photoperiod the lowest concentration has smallest mean and largest variance
- For the 16 hour photoperiod the conclusion is not so clear cut.

History

The developments leading to the general overview of statistical modelling, known as generalized linear models, extend over more than a century. This history can be traced very briefly as follows (McCullagh \& Nelder, 1989, Lindsey, 1997):

- multiple linear regression - a normal distribution with the identity link, $\mu_{i}=\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}$ (Legendre, Gauss, early XIX-th century);
- analysis of variance (ANOVA) designed experiments - a normal distribution with the identity link, $\mu_{i}=\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}$ (Fisher, 1920 to 1935);
- likelihood function - a general approach to inference about any statistical model (Fisher, 1922);
- dilution assays - a binomial distribution with the complementary log-log link, $\log \left[-\log \left(1-\mu_{i} / m_{i}\right)\right]=\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}$ (Fisher, 1922);
- exponential family - a class of distributions
with suficient statistics for the parameters (Fisher, 1934);
- probit analysis - a binomial distribution with the probit link, $\Phi^{-1}\left(\mu_{i} / m_{i}\right)=\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}$ (Bliss, 1935);
- logit for proportions - a binomial distribution with the logit link, $\log \frac{\mu_{i}}{m_{i}-\mu_{i}}=\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}$
(Berkson, 1944, Dyke \& Patterson, 1952);
- item analysis - a Bernoulli distribution with the logit link, $\log \frac{\mu_{i}}{1-\mu_{i}}=\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}$ (Rasch, 1960);
- log linear models for counts - a Poisson distribution with the log link, $\log \mu_{i}=\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}$ (Birch, 1963);
- regression models for survival data - - an exponential distribution with the reciprocal or the log link, $\frac{1}{\mu_{i}}=\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}$ or $\log \mu_{i}=\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}$ (Feigl \& Zelen, 1965, Zippin \& Armitage, 1966, Gasser, 1967);
- inverse polynomials - a gamma distribution with the reciprocal link, $\frac{1}{\mu_{i}}=\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}$ (Nelder, 1966).

Generalized Linear Models (glms)

Unifying framework for much statistical modelling.

First introduced by Nelder \& Wedderburn (1972) as an extension to the standard normal theory linear model.

- single response variable Y
- explanatory variables $x_{1}, x_{2}, \ldots, x_{p}$, $\left(x_{1} \equiv 1\right)$
- random sample: n observations $\left(y_{i}, \mathbf{x}_{i}\right)$, where $\mathbf{x}_{i}=\left(x_{1 i}, x_{2 i}, \ldots, x_{p i}\right)^{T}$

For more details see, for example:

- McCullagh \& Nelder (1989) - theory, applications
- Dobson (2002) - a simple introduction.
- Aitkin et al (2009) - practical application of glms using R

Definition of glm

Three components of a generalized linear model are:

- independent random variables Y_{i}, $i=1, \ldots, n$, from a linear exponential family distribution with means μ_{i} and constant scale parameter ϕ,

$$
f(y)=\exp \left\{\frac{y \theta-b(\theta)}{\phi}+c(y, \phi)\right\}
$$

where $\mu=\mathbf{E}[Y]=b^{\prime}(\theta)$ and
$\operatorname{Var}(Y)=\phi b^{\prime \prime}(\theta)$.

- a linear predictor vector $\boldsymbol{\eta}$ given by

$$
\boldsymbol{\eta}=X \boldsymbol{\beta}
$$

where $\boldsymbol{\beta}$ is a vector of p unknown parameters and $X=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right]^{T}$ is the $n \times p$ design matrix;

- a link function $g(\cdot)$ relating the mean to the linear predictor, i.e.

$$
g\left(\mu_{i}\right)=\eta_{i}=\mathbf{x}_{i}^{T} \boldsymbol{\beta}
$$

Table 1: Identifiers for exponencial family distributions

Distribution	$a(\phi)$	θ	$b(\theta)$	$c(y ; \phi)$	$\mu(\theta)$	$V(\mu)$
$\mathrm{N}\left(\mu, \sigma^{2}\right)$	σ^{2}	μ	$\frac{\theta^{2}}{2}$	$-\frac{1}{2}\left[\frac{y^{2}}{\sigma^{2}}+\log \left(2 \pi \sigma^{2}\right)\right]$	θ	1
$\mathrm{P}(\mu)$	1	$\log \mu$	e^{θ}	$-\log y!$	e^{θ}	μ
$\mathrm{B}(m, \pi)$	1	$\log \left(\frac{\pi}{1-\pi}\right)$	$m \log \left(1+e^{\theta}\right)$	$\log \binom{m}{m y}$	$\frac{e^{\theta}}{1+e^{\theta}}$	$\frac{1}{n_{2}} \mu(m-\mu)$
NB(k)	1	$\log \left(\frac{\mu}{\mu+k}\right)$	$-k \log \left(1-e^{\theta}\right)$	$\log \left[\frac{\Gamma(k+y)}{\Gamma(k) y!}\right]$	$k \frac{e^{\theta}}{1-e^{\theta}}$	4 $\left(\frac{\mu}{k}+1\right)$
$\mathrm{G}(\mu, \nu)$	ν^{-1}	$-\frac{1}{\mu}$	$-\log (-\theta)$	$\nu \log (\nu y)-\log y-\log \Gamma(\nu)$	$-\frac{1}{\theta}$	μ^{2}
$\mathrm{IG}\left(\mu, \sigma^{2}\right)$	σ^{2}	$-\frac{1}{2 \mu^{2}}$	$-(-2 \theta)^{\frac{1}{2}}$	$-\frac{1}{2}\left[\log \left(2 \pi \sigma^{2} y^{3}\right)+\frac{1}{\sigma^{2} y}\right]$	$(-2 \theta)-\frac{1}{2}$	μ^{3}

Canonical link functions for some distributio

Distribution	Canonical link functions
Normal	Identity: $\eta=\mu$
Poisson	Logaritmic: $\eta=\log (\mu)$
Binomial	Logistic: $\eta=\log \left(\frac{\pi}{1-\pi}\right)=\log \left(\frac{1}{m}\right.$
Gamma	Reciprocal: $\eta=\frac{1}{\mu}$

Inverse Gaussian

Normal Models

Continuous response variable - Y
Normal distribution, constant variance

$$
\begin{gathered}
Y_{i} \sim N\left(\mu_{i}, \sigma^{2}\right), \quad i=1, \ldots, n \\
\mu_{i}=\beta_{0}+\beta_{1} x_{1 i}+\ldots+\beta_{p} x_{p i}=\boldsymbol{\beta}^{T} \mathbf{x}_{i} \\
\hline
\end{gathered}
$$

- Regression models continuous explanatory variables
- fitting, testing, model checking
- Analysis of variance categorical explanatory variables
- ANOVA - balanced designs
- regression - general unbalanced designs
- Analysis of covariance mixture of continuous and categorical explanatory variables

Binomial regression models

Y_{i} counts of successes out of samples of size m_{i}, $i=1, \ldots, n$.
Writing

$$
\mathbf{E}\left[Y_{i}\right]=\mu_{i}=m_{i} \pi_{i}
$$

a glm models the expected proportions π_{i} in terms of explanatory variables \mathbf{x}_{i}

$$
g\left(\pi_{i}\right)=\boldsymbol{\beta}^{\prime} \mathbf{x}_{i}
$$

For $Y_{i} \sim \operatorname{Bin}\left(m_{i}, \pi_{i}\right)$ the variance function is

$$
\operatorname{Var}\left(Y_{i}\right)=m_{i} \pi_{i}\left(1-\pi_{i}\right)
$$

the canonical link function is the logit

$$
g\left(\mu_{i}\right)=\log \left(\frac{\mu_{i}}{m_{i}-\mu_{i}}\right)=\log \left(\frac{\pi_{i}}{1-\pi_{i}}\right)=\eta_{i}
$$

Other common choices are

- probit $g\left(\mu_{i}\right)=\Phi^{-1}\left(\mu_{i} / m_{i}\right)=\Phi^{-1}\left(\pi_{i}\right)$
- complementary log-log (CLL) link

$$
g\left(\mu_{i}\right)=\log \left\{-\log \left(1-\pi_{i}\right)\right\}
$$

Poisson regression models

If $Y_{i}, i=1, \ldots, n$, are counts with means μ_{i}, the standard Poisson model assumes that $Y_{i} \sim \operatorname{Pois}\left(\mu_{i}\right)$ with variance function

$$
\operatorname{Var}\left(Y_{i}\right)=\mu_{i}
$$

The canonical link function is the log

$$
g\left(\mu_{i}\right)=\log \left(\mu_{i}\right)=\eta_{i}
$$

For different observation periods/areas/volumes:

$$
Y_{i} \sim \operatorname{Pois}\left(t_{i} \lambda_{i}\right)
$$

Taking a log-linear model for the rates,

$$
\log \left(\lambda_{i}\right)=\mathbf{x}_{i}^{T} \boldsymbol{\beta}
$$

results in the following log-linear model for the Poisson means

$$
\log \left(\mu_{i}\right)=\log \left(t_{i} \lambda_{i}\right)=\log \left(t_{i}\right)+\mathbf{x}_{i}^{T} \boldsymbol{\beta}
$$

where the $\log \left(t_{i}\right)$ is included as a fixed term, or offset, in the model.

Estimation and model fitting

- Maximum likelihood estimation.
- Estimation algorithm (Nelder \& Wedderburn, 1972) - Iterativelly weighted least squares (IWLS)

$$
X^{T} W X \boldsymbol{\beta}=X^{T} W \mathbf{z}
$$

where
$X=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right]^{T}$ is a design matrix $n \times p$,
$W=\operatorname{diag}\left\{W_{i}\right\}-$ depends of the prior weights, variance function (distribution) and link function
$W_{i}=\frac{1}{V\left(\mu_{i}\right)}\left(\frac{d \mu_{i}}{d \eta_{i}}\right)^{2}$
$\boldsymbol{\beta}$ - parameter vector $p \times 1$
\mathbf{z} - a vector $n \times 1$ (adjusted response variable) depends on y and link function

$$
z_{i}=\eta_{i}+\left(y_{i}-\mu_{i}\right) \frac{d \eta_{i}}{d \mu_{i}}
$$

Inferential aspects

Measures of discrepancy:
Deviance

$$
S=\frac{\mathrm{D}}{\phi}=-2[\log \mathrm{~L}(\hat{\boldsymbol{\mu}}, \mathbf{y})-\log \mathrm{L}(\mathbf{y}, \mathbf{y})]
$$

where $\mathrm{L}(\hat{\boldsymbol{\mu}}, \mathbf{y})$ e $\mathrm{L}(\mathbf{y}, \mathbf{y})$ are the likelihood function values for the current and saturated models
Generalized Pearson X^{2}

$$
X^{2}=\sum \frac{\left(y_{i}-\hat{\mu}_{i}\right)^{2}}{V\left(\hat{\mu}_{i}\right)}
$$

- In general, comparisons involve nested models and deviance differences (Analysis of deviance).
- Many interesting comparisons involve non-nested models
- Use of Akaike Information Criterion (AIC) or Bayes Information Criterion (BIC) for model selection

AIC $=-2 \log \mathrm{~L}+2$ (number of fitted parameters) BIC $=-2 \log L+\log n$ (number of fitted parameters)

- When the dispersion parameter is unknown, it may be estimated by the Pearson Estimator

$$
\hat{\phi}=\frac{1}{n-p} \sum_{i=1}^{n} \frac{w_{i}\left(y_{i}-\hat{\mu}_{i}\right)^{2}}{V\left(\hat{\mu}_{i}\right)}
$$

where $\hat{\mu}_{i}=g^{-1}\left(\hat{\boldsymbol{\beta}}^{\prime} \mathbf{x}_{i}\right)$ is the i th fitted value.

- Some computer packages estimate ϕ by the deviance estimator $D(\hat{\boldsymbol{\beta}}) /(n-p)$; but it cannot be recommended because of problems with bias and inconsistency in the case of a non-constant variance function.
- For positive data, the deviance may also be sensitive to rounding errors for small values of y_{i}.
- The asymptotic variance of $\hat{\boldsymbol{\beta}}$ is estimated by the inverse (Fisher) information matrix, giving

$$
\operatorname{Var}(\hat{\boldsymbol{\beta}})=\mathbb{K}=\phi\left(\mathbb{X}^{T} \mathbb{W} \mathbb{X}\right)^{-1}
$$

where \mathbb{W} is calculated from $\hat{\boldsymbol{\beta}}$.

- The standard error $\operatorname{se}\left(\hat{\beta}_{j}\right)$ is calculated as the square-root of the j th diagonal element of this matrix, for $j=1, \ldots, p$
- When ϕ is known, a $1-\alpha$ confidence interval for β_{j} is defined by the endpoints

$$
\hat{\beta}_{j} \pm \operatorname{se}\left(\hat{\beta}_{j}\right) z_{1-\alpha / 2}
$$

where $z_{1-\alpha / 2}$ is the $1-\alpha / 2$ standard normal quantile.

- For ϕ unknown, we replace ϕ by $\hat{\phi}$ in \mathbb{K} and a $1-\alpha$ confidence interval for β_{j} is defined by the endpoints

$$
\hat{\beta}_{j} \pm \operatorname{se}\left(\hat{\beta}_{j}\right) t_{(1-\alpha / 2)}(n-p)
$$

where $t_{(1-\alpha / 2)}(n-p)$ is the $1-\alpha / 2$ quantile of Student's t distribution with $n-p$ degrees of freedom.

Analysis of Deviance - Goodness of fitting and model selection

- Analysis of deviance is the method of parameter inference for generalized linear models based on the deviance, generalizing ideas from ANOVA, and first introduced by Nelder and Wedderburn (1972).
- The situation is similar to regression analysis, in the sense that model terms must be eliminated sequentially, and the significance of a term may depend on which other terms are in the model.
- The deviance D measures the distance between y and $\hat{\mu}$, given by

$$
\mathrm{S}=\frac{D(\hat{\boldsymbol{\beta}})}{\phi}=-2[\log \mathrm{~L}(\hat{\mu}, y)-\log \mathrm{L}(y, y)]=2 \phi^{-1} \sum_{i=1}^{n} w_{i} y_{i}\left(\tilde{\theta}_{i}-\hat{\theta}\right.
$$

where $\mathrm{L}(\hat{\mu}, y)$ and $\mathrm{L}(y, y)$ are the likelihood function values for the current and saturated models, $\tilde{\theta}_{i}=\theta\left(y_{i}\right), \hat{\theta}_{i}=\theta\left(\hat{\mu}_{i}\right)$ and
$D(\hat{\boldsymbol{\beta}})=\sum_{i=1}^{n} w_{i} d\left(y_{i} ; \hat{\mu}_{i}\right)$.

Deviance for some models

Binomial

Deviance

Normal
$D_{p}=\sum_{i=1}^{n}\left(y_{i}-\hat{\mu}_{i}\right)^{2}$
$D_{p}=2 \sum_{i=1}^{n}\left[y_{i} \log \left(\frac{y_{i}}{\hat{\mu}_{i}}\right)+\left(p_{i}-y_{i}\right.\right.$
Poisson

$$
D_{p}=2 \sum_{i=1}^{n}\left[y_{i} \log \left(\frac{y_{i}}{\hat{\mu}_{i}}\right)+\left(\boldsymbol{q}_{i}-y_{i}\right)\right.
$$

Negative Binomial $\quad D_{p}=2 \sum_{i=1}^{n}\left[y_{i} \log \left(\frac{y_{i}}{\hat{\mu}_{i}}\right)+\left(y_{i}+k\right)\right.$
Gamma

Inverse Gaussian

$$
D_{p}=2 \sum_{i=1}^{n}\left[\log \left(\frac{\hat{\mu}_{i}}{y_{i}}\right)+\frac{y_{i}-\hat{\mu}_{i}}{\hat{\mu}_{i}}\right]
$$

- We consider separately the cases where ϕ is known and unknown, but first we introduce some notation.
- Let M_{1} denote a model with p parameters, and let $D_{1}=D(\hat{\beta})$ denote the minimized deviance under M_{1}
- Let M_{2} denote a sub-model of M_{1} with $q<p$ parameters, and let D_{2} denote the corresponding minimized deviance, where $D_{2} \geq D_{1}$

Known dispersion ϕ parameter

- Mainly relevant for discrete data, for which, in general, $\phi=1$.
- The deviance D_{1} is a measure of goodness-of-fit of the model M_{1}; and is also known as the G^{2} statistic in discrete data analysis.
- A more traditional goodness-of-fit statistic is Pearson's X^{2} statistic

$$
X^{2}=\sum \frac{w_{i}\left(y_{i}-\hat{\mu}_{i}\right)^{2}}{V\left(\hat{\mu}_{i}\right)}
$$

- Asymptotically, for large w the statistics D_{1} and X^{2} are equivalent and distributed as $\chi^{2}(n-p)$ under M_{1}.
- Various numerical and analytical investigations have shown that the limiting χ^{2} distribution is approached faster for the X^{2} statistic than for D_{1}, at least for discrete data.
- A formal level α goodness-of-fit test for M_{1} is obtained by rejecting M_{1} if $X^{2}>\chi_{(1-\alpha)}^{2}(n-p)$
- This test may be interpreted as a test for overdispersion.
- The fit of a model is a complex question, cannot be summarized in a single number supplement with an inspection of residuals.
- To test the sub-model M_{2} with $q<p$ we use the log likelihood ratio statistic

$$
D_{2}-D_{1} \sim \chi^{2}(p-q)
$$

- M_{2} is rejected at level α if

$$
D_{2}-D_{1}>\chi_{(1-\alpha)}^{2}(p-q)
$$

- In the case where $\phi \neq 1$ we use the scaled deviance D / ϕ instead of D; and the scaled Pearson statistic X^{2} / ϕ instead of X^{2} and so on.

Unknown dispersion ϕ parameter

- The dispersion parameter is usually unknown for continuous data
- In the discrete case we may prefer to work with unknown dispersion parameter, if evidence of overdispersion has been found in the data.
- There is no formal goodness-of-fit test available based on X^{2} - the fit of the model M_{1} to the data must be checked by residual analysis.
- X^{2} is used to estimate the dispersion parameter

$$
\hat{\phi}=\frac{1}{n-p} \sum \frac{w_{i}\left(y_{i}-\hat{\mu}_{i}\right)^{2}}{V\left(\hat{\mu}_{i}\right)}
$$

where $\hat{\mu}_{i}=g^{-1}\left(\hat{\boldsymbol{\beta}}^{\prime} \mathbf{x}_{i}\right)$ is the i th fitted value.

- To test the sub-model M_{2} with $q<p$ parameters inference may be based on
F-statistic,

$$
F=\frac{\left(D_{2}-D_{1}\right) /(p-q)}{\hat{\phi}} \sim F(p-q, n-p)
$$

- We reject M_{2} at level α if $F>F_{1-\alpha}(p-q, n-p)$

Table 2: Deviance Table - An example.

Model	DF	Deviance	Deviance Diff.	DF Diff.	Meanin
Null	$r a b-1$	D_{1}			
			$D_{1}-D_{A}$	$a-1$	A ignorin
A	$a(r b-1)$	D_{A}			
			$D_{A}-D_{A+B}$	$b-1$	B includin
$A+B$	$a(r b-1)-(b-1)$	D_{A+B}			
			$D_{A+B}-D_{A * B}$	$-1)(b-1)$	nteraccio
					ncluded A a
$A+B+A \cdot B$	$a b(r-1)$	$D_{A * B}$			
			$D_{A * B}$	$a b(r-1)$	Residua
Saturated	0	0			

Residual analysis

- Pearson residual

$$
r_{P i}=\frac{y_{i}-\hat{\mu}_{i}}{\sqrt{V\left(\hat{\mu}_{i}\right)}}
$$

reflect the skewness of the underlying distribution.

- Deviance residual

$$
r_{D i}=\operatorname{sign}\left(y_{i}-\hat{\mu}_{i}\right) \sqrt{d\left(y_{i} ; \hat{\mu}_{i}\right)}
$$

which is much closer to being normal than the Pearson residual, but has a bias (Jorgensen, 2011).

- Modified deviance residual (Jorgensen, 1997)

$$
r_{D i}^{*}=r_{D i}+\frac{\phi}{r_{D i}} \log \frac{r_{W i}}{r_{D i}}
$$

where $r_{W i}$ is the Wald residual defined by

$$
r_{W i}=\left[g_{0}\left(y_{i}\right)-g_{0}\left(\mu_{i}\right)\right] \sqrt{V\left(y_{i}\right)}
$$

where g_{0} is the canonical link.

- All those residuals have approximately mean zero and variance $\phi\left(1-h_{i}\right)$, where h_{i} is the i th diagonal element of the matrix $\mathbb{H}=\mathbb{W}^{1 / 2} \mathbb{X}\left(\mathbb{X}^{T} \mathbb{W} \mathbb{X}\right)^{-1} \mathbb{X}^{T} \mathbb{W}^{1 / 2}$.
- Use standardized residuals such as
$r_{D i}^{*}\left(1-h_{i}\right)^{1 / 2}$, which are nearly normal with variance ϕ
- Plot residuals against the fitted values - to check the the proposed variance function
- Normal Q-Q plot (or normal Q-Q plot with simulated envelopes) for the residuals - to check the correctness of the distributional assumption

R commands for GLM

glm(resp ~ linear predictor + offset (of), weights $=\mathrm{w}$, family=familyname(link ="linkname"))

The resp is the response variable y. For a binomial regression model it is necessary to create:
resp<-cbind (y, $n-y$)
The possible familes ("canonical link") are:

```
binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")
```

The default family is the gaussian family and default links are the canonical links (don't need to be declared). Other possible links are "probit", "cloglog", "cauchit",
"sqrt", etc. To see more, type
? glm

References

[1] Aitkin, M.A., Francis, B.F., Hinde, J.P. and Darnell, R. (2009) Statistical Modelling in R. Oxford University Press.
[2] Collet, D. (1994). Modelling binary data. Chapman and Hall, London.
[3] Dobson, A.J. (2002). An Introduction to Generalized Linear Models. Chapman and Hall, London.
[4] Gbur, E.E.; Stroup, W.W.; McCarter, K.S.; Durham, S.; Young, L.J.; Christman, M.; West, M.; Kramer, M. Analysis of Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences. American Society of Agronomy, Soil Science Society of America and Crop Science Society of America, Madison.
[5] Hardin, J.W.; Hilbe, J.M. (2007) Generalized linear models and extensions. Stata Press.
[6] Madsen, H.; Thyregod, P. (2011) An Introduction to General and Generalized Linear Models. Chapman and Hall, London.
[7] McCullagh, P. e Nelder, J.A. (1983, 1989).
Generalized linear models. Chapman and Hall, London.
[8] Myers, R.H.; Montgomery, D.C.; Vining, G.G. (2002) Generalized linear models with Applications in Engineering and the Sciences John Wiley, New York.

