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Overdispersion in glms

For a well fitting model:

Residual Deviance ≈ Residual d.f.

What if Residual Deviance ≫ Residual d.f.?

(i) Badly fitting model

• omitted terms/variables

• incorrect relationship (link)

• outliers

(ii) variation greater than predicted by model:
=⇒ Overdispersion

• count data: Var(Y ) > µ

• counted proportion data:

Var(Y ) > nπ(1− π)
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Causes of Overdispersion

• variability of experimental material
– individual level variability

• correlation between individual responses
e.g. litters of rats

• cluster sampling
e.g. areas; schools; classes; children

• aggregate level data

• omitted unobserved variables

• excess zero counts (structural and sampling
zeros)

Consequences

With correct mean model we have consistent
estimates of β but:

• incorrect standard errors

• selection of overly complex models
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Germination of Orobanche seed

Table 1: Orobanche seed germination data
(table entries yi/mi).

O. aegyptiaca 75 O. aegyptiaca 73

Bean Cucumber Bean Cucumber

10/39 5/6 8/16 3/12

23/62 53/74 10/30 22/41

23/81 55/72 8/28 15/30

26/51 32/51 23/45 32/51

17/39 46/79 0/4 3/7

10/13
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Simple Binomial Model

• No of seeds germinating yi as y-variable

• Binomial logit model

• Species * Extract interaction model

Deviance(Species.Extract) = 6.41 on 1 df

Residual Deviance = 33.28 on 17 df

• Interaction significant

• Some evidence of overdispersion?
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Worldwide Airline Fatalities, 1976-85

Year Fatal Passenger Passenger

accidents deaths miles

(100 million)

1976 24 734 3863

1977 25 516 4300

1978 31 754 5027

1979 31 877 5481

1980 22 814 5814

1981 21 362 6033

1982 26 764 5877

1983 20 809 6223

1984 16 223 7433

1985 22 1066 7107
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Simple Models

• Passenger miles (mi) as exposure variable

• Poisson log-linear model

• Linear time trend

Yi ∼ Pois(miλi)

log λi = β0 + β1year

Fatal accidents:

Deviance(time trend) = 20.68

Residual Deviance = 5.46 on 8 d.f.

Passenger deaths:

Deviance(time trend) = 202.1

Residual Deviance = 1051.5 on 8 d.f.

=⇒ compounding with aircraft size
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Models for Overdispersion

Two broad categories

• assume some more general form for the
variance function, possibly with additional
parameters.

Estimation using moment methods,

quasi-likelihood, extended quasi-likelihood,

pseudo-likelihood, . . .

• assume a two-stage model for the response
with the response model parameter following
some distribution.

Maximum likelihood estimation (conjugate
distribution models) or approximate methods
(e.g. using first two moments as above)

Full hierarchical model – Bayesian methods
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Mean-variance Models

Overdispersed Proportion Data

Yi successes out of mi trials, i = 1, . . . , n.

Model expected proportions πi with link function
g and

g(πi) = β′
xi

• constant overdispersion

Var(Yi) = φmiπi(1− π1)

• A general variance function:
Overdispersion allowed to depend upon both
mi and πi.

Var(Yi) = miπi(1− πi)×[
1 + φ(mi − 1)δ1{πi(1− πi)}δ2

]
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Count data

Random variables Yi represent counts with means
µi.

• Constant overdispersion

Var(Yi) = φµi

can arise through a simple compounding
process.
Suppose that N ∼ Pois(µN ) and

T =
∑N

i=1
Xi, Xi are iid random variables.

E[T ] = µT = EN (E[T |N ]) = µNµX

Var(T ) = EN [Var(T |N)] + VarN (E[T |N ])

= µT

(
σ2

X

µX

+ µX

)
= µT

E[X2]

E[X ]

• A general variance function

Var(Yi) = µi

{
1 + φµδ

i

}
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Two-stage Models – Binomial

Beta-Binomial

Yi|Pi ∼ Bin(mi, Pi)

E(Pi) = πi Var(Pi) = φπi(1− πi)

Unconditionally, E(Yi) = miπi and

Var(Yi) = miπi(1− πi)[1 + (mi − 1)φ]

Taking Pi ∼ Beta(αi, βi), with αi + βi fixed,
gives beta-binomial distribution for Yi with the
same variance function.
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The same variance function results from assuming
that individual binary responses are not
independent but have a constant correlation.

Writing Yi =
∑mi

j=1
Rij , where Rij are Bernoulli

random variables with

E[Rij] = πi and Var(Rij) = πi(1− πi)

then, assuming a constant correlation ρ between
the Rij ’s for j 6= k, we have

Cov(Rij , Rik) = ρπi(1− πi)

and

E[Yi] = miπi

Var(Yi) =

mi∑

j=1

Var(Rij) +

mi∑

j=1

∑

k 6=j

Cov(Rij , Rik)

= miπi(1− πi) +mi(mi − 1)[ρπi(1− πi)]

= miπi(1− πi)[1 + ρ(mi − 1)],
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Logistic-normal and related models

Random effect in the linear predictor

ηi = β′
xi + σzi

• assume zi ∼ N(0, 1)

– Probit-normal model - a convenient
interpretation as a threshold model for a
normally distributed latent variable
(McCulloch, 1994).

– Logistic-normal using EM algorithm with
Gaussian quadrature.

– Approximate approach using a Williams
type III model with

Var(Yi) = miπi(1− πi)[1 + φ(mi − 1)πi(1− πi)]

• make no specific distributional assumption
about z - estimate a discrete mixing
distribution by non-parametric maximum
likelihood (NPML).
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Considered as the two-stage model, the logit(Pi) have a
normal distribution with variance σ2, i.e.
logit(Pi) ∼ N(xT

i β, σ2). Writing

Ui = logit(Pi) = log
Pi

(1− Pi)
⇒ Pi =

eUi

(1 + eUi)

and using Taylor series for Pi, around Ui = E[Ui] = x
T
i β,

we have

Pi =
ex

T
i β

(1 + ex
T
i
β)

+
ex

T
i β

(1 + ex
T
i
β)2

(Ui−x
T
i β)+o(Ui−x

T
i β).

Then

E(Pi) ≈
ex

T
i β

(1 + ex
T
i
β)

:= πi

and

Var(Pi) ≈
[

ex
T
i β

(1 + ex
T
i
β)2

]2

Var(Ui) = σ2π2
i (1− πi)

2

Consequently the variance function for the logistic-normal
model can be approximated by

Var(Yi) ≈ miπi(1− πi)[1 + σ2(mi − 1)πi(1− πi)]

which Williams (1982) refers to as a type III variance
function.
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Two-stage models – Count data

Negative Binomial Type Variance

• Variation in Poisson rate parameter:

Yi|θi ∼ Pois(θi), θi ∼ Γ(k, λi)

leads to negative binomial distribution with

E[Yi] = µi = k/λi

and

Var(Yi) = µi +
µ2

i
k

For known k, in the 1-parameter exponential
family so still in glm framework.

• Different assumptions for the Γ-distribution
lead to different parameterizations with
different overdispersed variance functions,
e.g. θi ∼ Γ(ki, λ) gives

Var(Yi) = µi

(
1 + 1

λ

)
= φµi
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Negative binomial distribution

Yi|θi ∼ Pois(θi)

θi ∼ Gamma(k, λi), i = 1, . . . , n

This leads to a negative binomial distribution for the Yi

with

fYi
(yi;µi, k) =

Γ(k + yi)

Γ(k)yi!

µ
yi
i kk

(µi + k)k+yi
, yi = 0, 1, . . .

and

E(Yi) = k/λi = µi

Var(Yi) = Eθi [Var(Yi|θi)] + Varθi (E[Yi|θi])

= E[θi] + Var(θi) =
k

λi
+

k

λ2
i

Var(Yi) = µi +
µ2
i

k
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Poisson-normal and related models

Individual level random effect in the linear
predictor

ηi = β′
xi + σZi

• assume Zi ∼ N(0, 1), so

Yi|Zi ∼ Pois(λi) with log λi = x
T
i β+σZi

where Zi ∼ N(0, 1), which gives

E[Yi] = EZi
(E[Yi|Zi]) = EZi

[ex
T
i β+σZi ]

= e
x
T
i β+

1
2
σ2

:= µi

Var(Yi) = EZi
[Var(Yi|Zi)] + VarZi

(E[Yi|Zi])

= e
x
T
i β+

1
2
σ2

+ VarZi
(ex

T
i β+σZi)

= e
x
T
i β+

1
2
σ2

+ e2x
T
i β+σ2

(eσ
2 − 1).

i.e. a variance function of the form

Var(Yi) = µi + k′µ2

i

• make no specific distributional assumption
about Z - estimate a discrete mixing
distribution by NPML.
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Estimation Methods

Maximum Likelihood

Under the negative-binomial model we have the
following expression for the log-likelihood:

ℓ(µ, k;y) =
n∑

i=1

{
yi logµi

+ k log k − (k + yi) log(k + µi)

+ log
Γ(k + yi)

Γ(k)
− log yi!

}

=
n∑

i=1

{
yi logµi + k log k

− (k + yi) log(k + µi)

+ dlg(yi, k)− log yi!
}

Notice here that for fixed values of k we have a
linear exponential family model and consequently
a generalized linear model.
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Modelling the µi’s with a linear predictor ηi = x
T
i β and

link function g(µi) = ηi we obtain the following score
equations for mle:

∂ℓ

∂βj
=

n∑

i=1

{
yi

µi
− k + yi

k + µi

}
∂µi

∂βj

=

n∑

i=1

(yi − µi)

µi(1 + µi

k
)

1

g′(µi)
xij

∂ℓ

∂k
=

n∑

i=1

{
ddg(yi, k)− log(µi + k)

− k + yi

k + µi
+ log k + 1

}
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The score equations for β are the usual quasi-score
equations for a glm with

V (µ) = µ(1 +
µ

k
)

and

g(µ) = η

and so provide a simple approach for fitting negative
binomial regression models using a Gauss-Seidel approach:

1. For a fixed value of k, estimate β using a standard
glm fit (IRLS) with a variance function
V (µ) = µ+ µ2/k;

2. for fixed β, and hence µ, estimate k using a
Newton-Raphson iterative scheme

k(m+1) = k(m) −
(

∂ℓ

∂k

/
∂2ℓ

∂k2

) ∣∣∣∣
k(m)

3. iterating over 1 and 2 until convergence.
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Maximum Quasi-Likelihood

For constant overdispersion models with a
variance of the form

Var(Yi) = φVi(µi)

to estimate the regression parameters maximize
the quasi-likelihood

Q = − 1

2

n∑

i=1

{
D(yi, µi)

φ

}

where D is the deviance function

D(y, µ) = −2

∫ µ

y

(y − t)

V (t)
dt

β̂ is the same as the m.l.e. for the exponential

family with variance function V (µ), e.g. for
V (µ) = µ – Poisson
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The overdispersion parameter φ is estimated by
equating the Pearson X2 statistic to the residual
degrees of freedom.

1. overdispersed binomial model

φ̃ =
1

(n− p)

n∑

i=1

(yi −miπ̂i)
2

miπ̂i(1− π̂i)

2. overdispersed Poisson model

φ̃ =
1

(n− p)

n∑

i=1

(yi − µ̂i)
2

µ̂i

The standard errors of the β̂ will be as for the

non-dispersed model inflated by

√
φ̃.
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Extended Quasi-Likelihood (EQL)

For Var(Yi) = φi(γ)Vi(µi,λ), the extended
quasi-likelihood (EQL) criterion (Nelder and
Pregibon 1987) involves maximizing

Q+ = − 1
2

n∑

i=1

{
D(yi, µi)

φi
+ log (2πφiVi(yi))

}
,

where D is the deviance function

D(y, µ) = −2

∫ µ

y

(y − t)

Vi(t)
dt.

Beta-binomial variance function

Vi(t) = t(1− t/mi)

and

φi = 1 + (mi − 1)φ

giving a binomial deviance function, DB(yi, µi) and

Q+ = − 1
2

n∑

i=1

{
DB(yi, µi)

φi
+ log

[
2πφiyi

(
1− yi

mi

)]}
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EQL Estimation

The quasi-score equation for βj is

∂Q+

∂βj
=

n∑

i=1

1

φi

yi − µi

µi(1− µi

mi
)

1

g′(µi)
xij

• estimation of β for known φ – usual binomial fit with
weights

1/φi = 1/[1 + (mi − 1)φ]

• estimation of φ – solve

n∑

i=1

{
D(yi, µi)

φi
− 1

}
d log(φi)

dφ

=

n∑

i=1

{
D(yi, µi)− φi

φ2
i

}
dφi

dφ
= 0

Fit a gamma model to deviance components from the
binomial fit using an identity link, fixed intercept of 1
and mi − 1 as explanatory variable.

• Iterate over two estimation steps until convergence.
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Pseudo-Likelihood

• Estimate β by quasi-likelihood as in EQL.

• Estimate additional parameters in the variance
function by maximizing

P = − 1
2

n∑

i=1

{
(yi − µi)

2

φiVi(µi)
+ log (2πφiVi(µi))

}

.

Here, to estimate φ we need to solve

n∑

i=1

{
(yi − µi)

2

φiVi(µi)
− 1

}
d log(φi)

dφ

=

n∑

i=1

{
r2i − φi

φ2
i

}
dφi

dφ
= 0

Procedure same as for EQL, but now using squared
Pearson residuals

ri = (yi − µi)/
√

Vi(µi)

rather than deviances.
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Example: Negative Binomial

The estimating equation for k is

n∑

i=1

{
(yi − µi)

2

µi(1 + µi/k)
− 1

}
d logVk(µi)

dk
= 0

where Vk(µi) = µi(1 + µi/k).

Set this up as a gamma estimating equation using

• squared Poisson Pearson residuals as the
y-variable

• an identity link

• a linear model with

– a fixed offset of 1

– the current estimate of µi as the
explanatory variable.
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Testing Overdispersion

• Goodness of fit test for overdispersed models is
problematic

– overdispersion parameters act as some form of
scale parameter

– effectively estimated from residual deviance

– scaled deviance and Pearson X2 typically approx
equal to df.

• Test of overdispersion by comparison to the standard
model fit.

– For a two stage model, testing overdispersion
frequently reduces to testing an additional
parameter.
Testing the negative binomial against Poisson

distributions corresponds to testing θ = θ̂ against
θ → ∞.
This involves testing a value on the boundary of
the parameter space - usual asymptotic theory
does not apply.
Appropriate asymptotic distribution for this
statistic under the null hypothesis is one which
has a probability mass of 1

2
at 0 and a 1

2
χ2
(1)

distribution above 0.
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Score Tests

Dean (1992) gives score tests for various
overdispersion models.

Binary Data

• Beta-binomial

∑
{[p̂i(1− p̂i]

−1[(yi −mip̂i)
2 + p̂i(yi −mip̂i)− yi(1− p̂i)]}

{2
∑

mi(mi − 1)}1/2

• Logistic-Normal

∑
{(yi −mip̂i)

2 −mip̂i(1− p̂i)}

V̂
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Count Data

• Constant overdispersion

1√
2n

∑{ (yi − µ̂i)
2 − yi

µ̂i

}

• Negative Binomial
∑

{(yi − µ̂i)
2 − yi}

{2∑ µ̂2
i }1/2

• Poisson-lognormal
∑{(yi − µ̂i)

2 − µ̂i}
{2∑ µ̂2

i }1/2

She also gives adjusted versions which take account of the
estimation of the mean required to compute the statistics.
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Half-normal Plots with simulation envelopes

• Fit a model and calculate, d(i), the
ordered absolute values of some
diagnostic.

• Simulate 19 samples for the response
variable using the fitted model and the
same values for the explanatory
variables.

• Refit the model to each sample and
calculate the ordered absolute values
of the diagnostic of interest, d∗j(i),
j = 1, . . . , 19, i = 1, . . . , n.

• For each i, calculate the mean,
minimum and maximum of the d∗j(i).

• Plot these values and the observed d(i)
against the half-normal order statistics.
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Model selection

From Jorgensen (1997), when:

• φ is known, in particular for natural
exponential families, inference may be based
on

D2 −D1 ∼ χ2

• φ is unknown, inference may be based on the
following F−statistic,

F =
(D2 −D1)/(f2 − f1)

D1/f1
∼ F (f2 − f1, f1)

if φ is small.

For overdispersed models a test statistic for two
nested models is

F =
(D2 −D1)/(f2 − f1)

φ̂
∼ Ff2−f1,f3

where φ̂ is estimated from preferably a maximal
model, with f3 df.
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Then for an overdispersion parameter estimated
from fitting the full model:

• fix its value

• weight the observations by wi =
1

φi

• fit different sub-models

• the difference in the deviance for two
alternative (nested) models is compared with
percentage points of the F ;
non-significant result ⇒ the two models
cannot be distinguished

• Many interesting comparisons involve
non-nested models

• Use of Akaike Information Criterion (AIC) or
Bayes Information Criterion (BIC) for model
selection

AIC = −2 log L+ 2 (number of fitted parameters)
BIC = −2 log L+ log n (number of fitted parameters)
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Models for Orobanche Data

Binomial:

Var(Yi) = miπi(1− πi)

• significant interaction
• overdispersion

Quasi-likelihood:

Var(Yi) = miπi(1− πi)

• constant overdispersion φ̃ = 1.862
• only marginal evidence of interaction
• extract only important factor

Williams:

Var(Yi) = miπi(1− πi)[1 + φ(mi − 1)]

• moment estimate φ̃ = 0.0249
• only marginal evidence of interaction
• extract only important factor
• similarity to QL, even though mi not equal.
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Figure 1: Orobanche Data. Half-normal plots: ×
– data; — simulated envelope
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Quine’s School Absence Data

Aitkin et al (1989) describe a data set on absence
from school from a Sociological study of
Australian Aboriginal and white children.
The response variable of interest is the number of
days absent from school cross-classified by age
(A, 4 levels), sex (S, 2 levels), cultural group (C, 2
levels) and learning rate (L, 2 levels).

• Using a Poisson model the residual deviance
is very large even for the maximal model

Deviance=1173.9 on 118 df.
⇒ strong evidence of overdispersion.

• The negative binomial distribution provides a
possible overdispersion model for this data

Deviance=167.4 on 118 df.
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Figure 2: Quine data. Half-normal plots: × –
data; — simulated envelope



Generalized Linear Models Course: Session 5 36'

&

$

%

Extended overdispersion models

Random effect models

• In many applications the overdispersion
mechanism is assumed to be the same for all
of the observations.

• However, in some applications it is quite
conceivable that the overdispersion may be
different in different subgroups of the data.

• Explicit models for the variance, and hence
overdispersion, are easily handled by an
additional model for the scale parameter of
the form

h(φi) = γT
zi

– link function h, usually the identity or the
log.

– vector of explanatory variables zi may
include covariates in the mean model
giving great flexibility for joint modelling
of the mean and dispersion.

– estimation can proceed by either EQL or
PL using a gamma estimating equation
for γ
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Generalized linear mixed models

Another natural way to extend the category of two-stage
models is to add more complex random effects structures
in the linear predictor, taking

ηi = βT
xi + γT

zi

where β is a vector of fixed effects, γ is a vector of
random effects and xi and zi are corresponding vectors of
explanatory variables.

• Assuming that these random effects are normally
distributed gives a direct generalization of the
standard linear mixed model for normally distributed
responses to what is commonly called the generalized
linear mixed model (GLMM).

• Estimation within this family is non-trivial and a
number of different approaches have been proposed,
including penalised quasi-likelihood, restricted
maximum likelihood and Bayesian methods using
Markov chain Monte Carlo.

• In some simple models with nested random effects,
maximum likelihood estimation is possible.
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• In many situations the assumption of
normality for the random effects is neither
natural nor computationally convenient and
Lee & Nelder (1996) propose an extension of
GLMMs to hierarchical generalized linear
models.

– the random components can come from
an arbitrary distribution, although they
particularly favour the use of a
distribution conjugate to that of the
response.

– estimation is based on h-likelihood, a
generalization of the restricted maximum
likelihood method used for standard
normal linear mixed model.

– such models are also easily handled within
the Bayesian paradigm using Markov
chain Monte Carlo methods

– the non-parametric maximum likelihood
approach can also be extended to these
more complex models
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Models for counts with excess zeros

• Mixed Poisson distributions

• Zero-modified distributions

• Hurdle models

• Semi-parametric hurdle models

• Birth process models

• Threshold models


