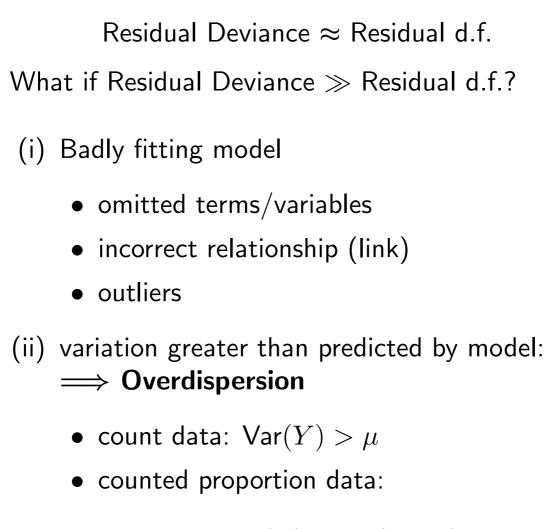
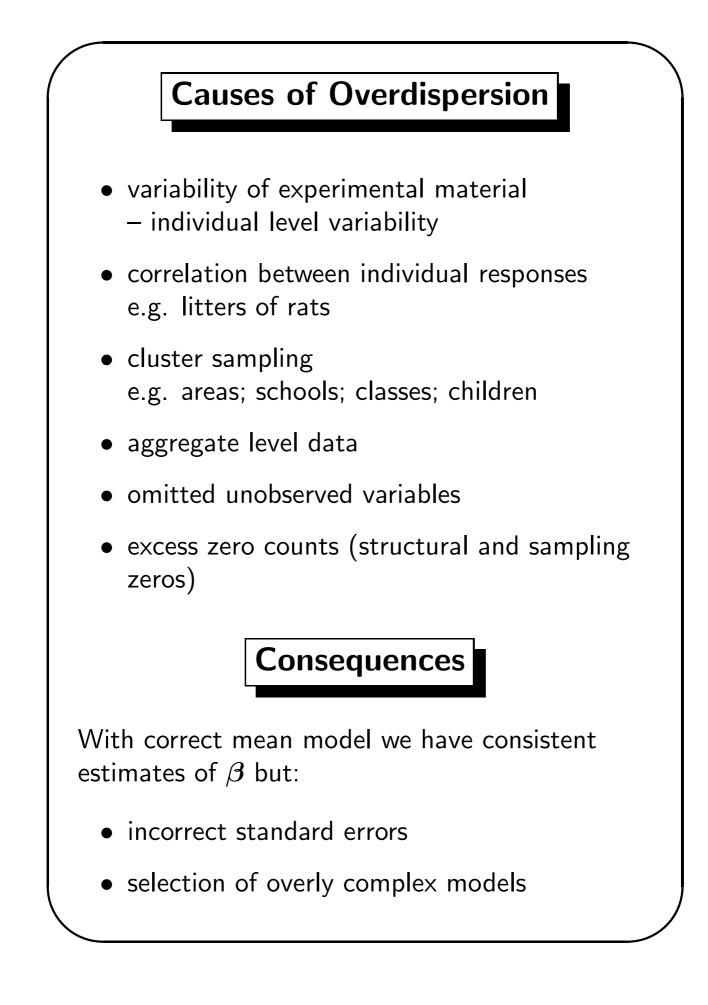


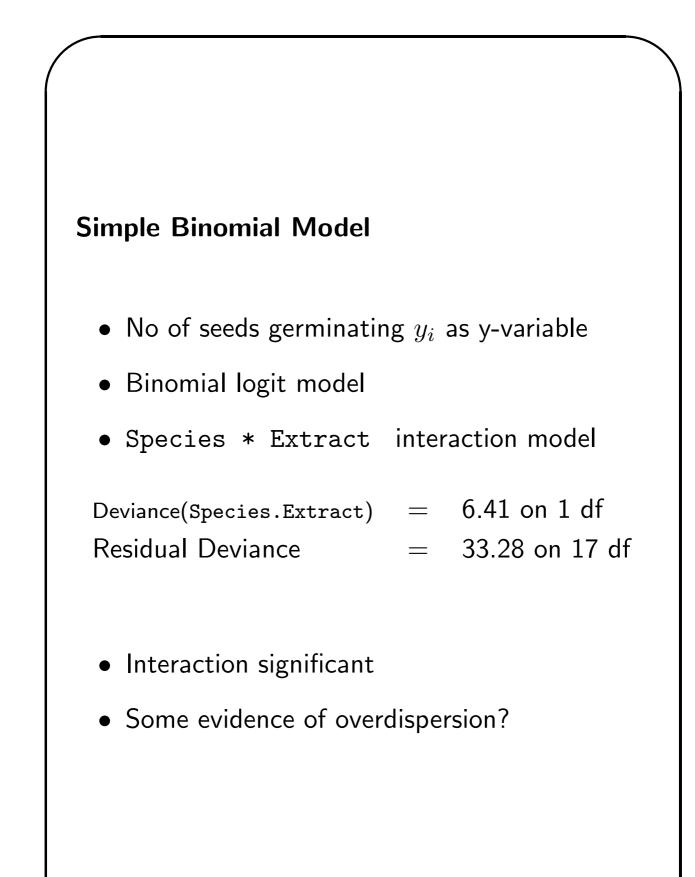
For a well fitting model:



$$\mathsf{Var}(Y) > n\pi(1-\pi)$$



Germi	nation of (Oroban	che seed
			che seeu
le 1∙ Or	obanche seed	l _{øermina}	tion data
	es y_i/m_i).	Sciinia	
O. aegyptiaca 75		O. aegyptiaca 73	
Bean	Cucumber	•	Cucumber
10/39	5/6	8/16	3/12
23/62	53/74	10/30	22/41
23/81	55/72	8/28	15/30
26/51	32/51	23/45	32/51
17/39	46/79	0/4	3/7
	10/13		



Worldwide Airline Fatalities, 1976-85

Year	Fatal	Passenger	Passenger
	accidents	deaths	miles
			(100 million)
1976	24	734	3863
1977	25	516	4300
1978	31	754	5027
1979	31	877	5481
1980	22	814	5814
1981	21	362	6033
1982	26	764	5877
1983	20	809	6223
1984	16	223	7433
1985	22	1066	7107

Simple Models

- Passenger miles (m_i) as exposure variable
- Poisson log-linear model
- Linear time trend

$$Y_i \sim \mathsf{Pois}(m_i \lambda_i)$$

 $\log \lambda_i = \beta_0 + \beta_1 \mathsf{year}$

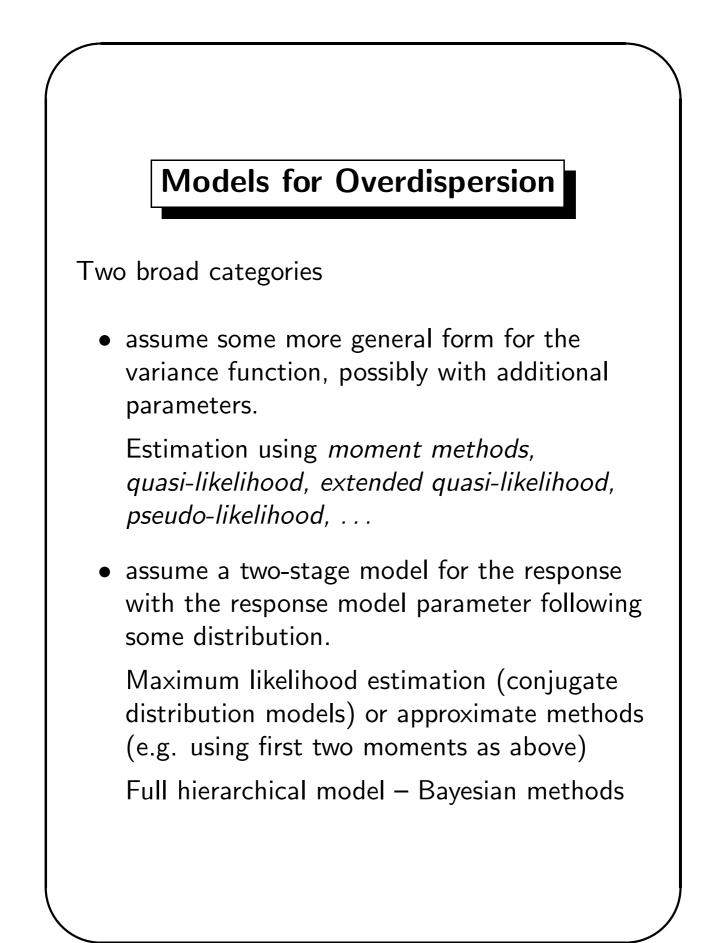
Fatal accidents:

Deviance(time trend)	=	20.68
Residual Deviance	=	5.46 on 8 d.f.

Passenger deaths:

Deviance(time trend) = 202.1Residual Deviance = 1051.5 on 8 d.f.

 \implies compounding with aircraft size



Mean-variance Models

Overdispersed Proportion Data

 Y_i successes out of m_i trials, $i = 1, \ldots, n$.

Model expected proportions π_i with link function g and

$$g(\pi_i) = \boldsymbol{\beta}' \mathbf{x}_i$$

constant overdispersion

$$\mathsf{Var}(Y_i) = \phi m_i \pi_i (1 - \pi_1)$$

• A general variance function: Overdispersion allowed to depend upon both m_i and π_i .

$$Var(Y_{i}) = m_{i}\pi_{i}(1-\pi_{i}) \times \left[1+\phi(m_{i}-1)^{\delta_{1}}\{\pi_{i}(1-\pi_{i})\}^{\delta_{2}}\right]$$

Count data

Random variables Y_i represent counts with means μ_i .

• Constant overdispersion

$$\mathsf{Var}(Y_i) = \phi \mu_i$$

can arise through a simple compounding process. Suppose that $N \sim \text{Pois}(\mu_N)$ and $T = \sum_{i=1}^{N} X_i$, X_i are iid random variables.

$$\mathbf{E}[T] = \mu_T = \mathbf{E}_N(\mathbf{E}[T|N]) = \mu_N \mu_X$$

$$\begin{aligned} \mathsf{Var}(T) &= \mathbf{E}_N[\mathsf{Var}(T|N)] + \mathsf{Var}_N(\mathbf{E}[T|N]) \\ &= \mu_T\left(\frac{\sigma_X^2}{\mu_X} + \mu_X\right) = \mu_T\frac{\mathbf{E}[X^2]}{\mathbf{E}[X]} \end{aligned}$$

• A general variance function

$$\mathsf{Var}(Y_i) = \mu_i \left\{ 1 + \phi \mu_i^\delta \right\}$$

Beta-Binomial

$$Y_i | P_i \sim \mathsf{Bin}(m_i, P_i)$$

$$\mathbf{E}(P_i) = \pi_i \operatorname{Var}(P_i) = \phi \pi_i (1 - \pi_i)$$

Unconditionally, $\mathbf{E}(Y_i) = m_i \pi_i$ and

$$Var(Y_i) = m_i \pi_i (1 - \pi_i) [1 + (m_i - 1)\phi]$$

Taking $P_i \sim \text{Beta}(\alpha_i, \beta_i)$, with $\alpha_i + \beta_i$ fixed, gives beta-binomial distribution for Y_i with the same variance function.

The same variance function results from assuming that individual binary responses are not independent but have a constant correlation.

Writing $Y_i = \sum_{j=1}^{m_i} R_{ij}$, where R_{ij} are Bernoulli random variables with

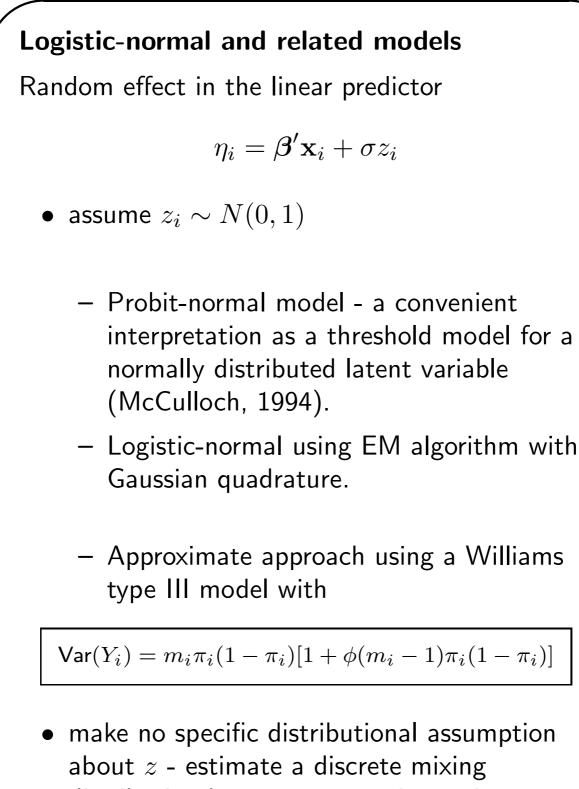
$$\mathbf{E}[R_{ij}] = \pi_i$$
 and $\operatorname{Var}(R_{ij}) = \pi_i(1 - \pi_i)$

then, assuming a constant correlation ρ between the R_{ij} 's for $j \neq k$, we have

$$\mathsf{Cov}(R_{ij}, R_{ik}) = \rho \pi_i (1 - \pi_i)$$

and

$$\begin{aligned} \mathbf{E}[Y_i] &= m_i \pi_i \\ \mathsf{Var}(Y_i) &= \sum_{j=1}^{m_i} \mathsf{Var}(R_{ij}) + \sum_{j=1}^{m_i} \sum_{k \neq j} \mathsf{Cov}(R_{ij}, R_{ik}) \\ &= m_i \pi_i (1 - \pi_i) + m_i (m_i - 1) [\rho \pi_i (1 - \pi_i)] \\ &= m_i \pi_i (1 - \pi_i) [1 + \rho (m_i - 1)], \end{aligned}$$



about z - estimate a discrete mixing distribution by non-parametric maximum likelihood (NPML).

Considered as the two-stage model, the logit(P_i) have a normal distribution with variance σ^2 , i.e. logit(P_i) ~ N($\mathbf{x}_i^T \boldsymbol{\beta}, \sigma^2$). Writing

$$U_i = \operatorname{logit}(P_i) = \log \frac{P_i}{(1 - P_i)} \Rightarrow P_i = \frac{e^{U_i}}{(1 + e^{U_i})}$$

and using Taylor series for P_i , around $U_i = \mathbf{E}[U_i] = \mathbf{x}_i^T \boldsymbol{\beta}$, we have

$$P_i = \frac{e^{\mathbf{x}_i^T \boldsymbol{\beta}}}{(1 + e^{\mathbf{x}_i^T \boldsymbol{\beta}})} + \frac{e^{\mathbf{x}_i^T \boldsymbol{\beta}}}{(1 + e^{\mathbf{x}_i^T \boldsymbol{\beta}})^2} (U_i - \mathbf{x}_i^T \boldsymbol{\beta}) + o(U_i - \mathbf{x}_i^T \boldsymbol{\beta}).$$

Then

$$\mathbf{E}(P_i) \approx \frac{e^{\mathbf{x}_i^T \boldsymbol{\beta}}}{(1 + e^{\mathbf{x}_i^T \boldsymbol{\beta}})} := \pi_i$$

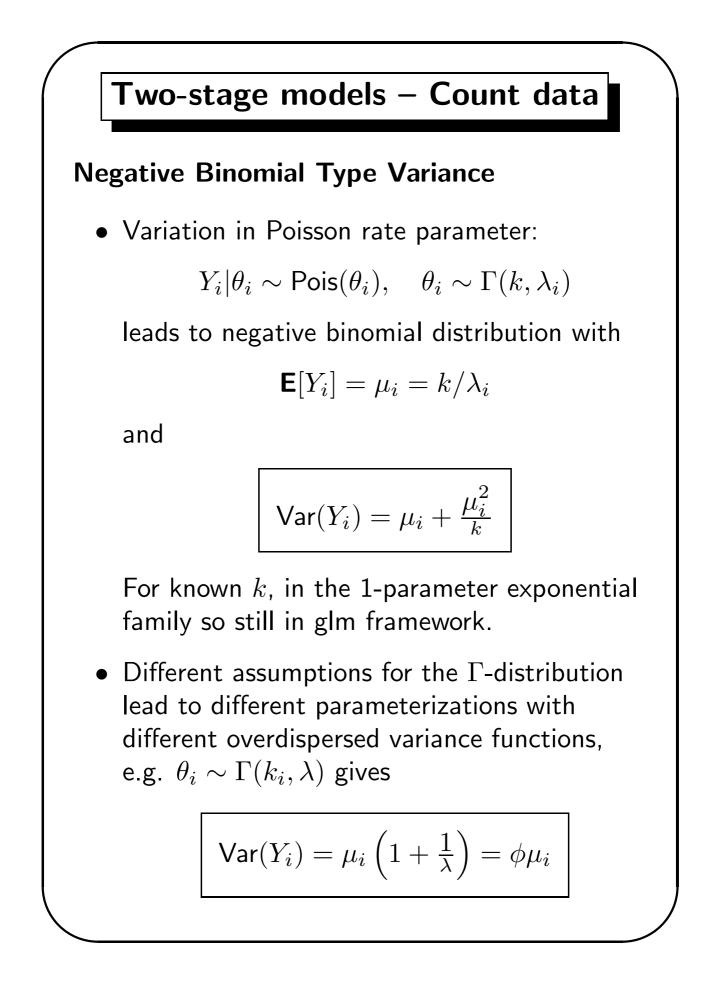
and

$$\operatorname{Var}(P_i) \approx \left[\frac{e^{\mathbf{x}_i^T \boldsymbol{\beta}}}{(1 + e^{\mathbf{x}_i^T \boldsymbol{\beta}})^2}\right]^2 \operatorname{Var}(U_i) = \sigma^2 \pi_i^2 (1 - \pi_i)^2$$

Consequently the variance function for the logistic-normal model can be approximated by

$$\operatorname{Var}(Y_i) \approx m_i \pi_i (1 - \pi_i) [1 + \sigma^2 (m_i - 1) \pi_i (1 - \pi_i)]$$

which Williams (1982) refers to as a type III variance function.



$$Y_i | heta_i \sim \mathsf{Pois}(heta_i)$$

 $heta_i \sim \mathsf{Gamma}(k, \lambda_i)$, $i = 1, \dots, n$

This leads to a **negative binomial distribution** for the Y_i with

$$f_{Y_i}(y_i;\mu_i,k) = \frac{\Gamma(k+y_i)}{\Gamma(k)y_i!} \frac{\mu_i^{y_i}k^k}{(\mu_i+k)^{k+y_i}}, \quad y_i = 0, 1, \dots$$

 and

$$\begin{split} \mathbf{E}(Y_i) &= k/\lambda_i = \mu_i \\ \mathsf{Var}(Y_i) &= \mathbf{E}_{\theta_i}[\mathsf{Var}(Y_i|\theta_i)] + \mathsf{Var}_{\theta_i}(\mathbf{E}[Y_i|\theta_i]) \\ &= \mathbf{E}[\theta_i] + \mathsf{Var}(\theta_i) = \frac{k}{\lambda_i} + \frac{k}{\lambda_i^2} \end{split}$$

$$\mathsf{Var}(Y_i) = \mu_i + \frac{\mu_i^2}{k}$$

Poisson-normal and related models Individual level random effect in the linear predictor $\eta_i = \boldsymbol{\beta}' \mathbf{x}_i + \sigma Z_i$ • assume $Z_i \sim N(0, 1)$, so $Y_i | Z_i \sim \mathsf{Pois}(\lambda_i)$ with $\log \lambda_i = \mathbf{x}_i^T \boldsymbol{\beta} + \sigma Z_i$ where $Z_i \sim N(0, 1)$, which gives $\mathbf{E}[Y_i] = \mathbf{E}_{Z_i} \left(\mathbf{E}[Y_i|Z_i] \right) = \mathbf{E}_{Z_i} \left[e^{\mathbf{x}_i^T \boldsymbol{\beta} + \sigma Z_i} \right]$ $= e^{\mathbf{x}_i^T \boldsymbol{\beta} + \frac{1}{2}\sigma^2} := u_i$ $Var(Y_i) = \mathbf{E}_{Z_i}[Var(Y_i|Z_i)] + Var_{Z_i}(\mathbf{E}[Y_i|Z_i])$ $= e^{\mathbf{x}_i^T \boldsymbol{\beta} + \frac{1}{2}\sigma^2} + \operatorname{Var}_{Z_i}(e^{\mathbf{x}_i^T \boldsymbol{\beta} + \sigma Z_i})$ $= e^{\mathbf{x}_i^T \boldsymbol{\beta} + \frac{1}{2}\sigma^2} + e^{2\mathbf{x}_i^T \boldsymbol{\beta} + \sigma^2} (e^{\sigma^2} - 1).$

i.e. a variance function of the form

$$\mathsf{Var}(Y_i) = \mu_i + k' \mu_i^2$$

 make no specific distributional assumption about Z - estimate a discrete mixing distribution by NPML.

Estimation Methods

Maximum Likelihood

Under the negative-binomial model we have the following expression for the log-likelihood:

$$\ell(\boldsymbol{\mu}, k; \mathbf{y}) = \sum_{i=1}^{n} \left\{ y_i \log \mu_i + k \log k - (k + y_i) \log(k + \mu_i) + \log \frac{\Gamma(k + y_i)}{\Gamma(k)} - \log y_i! \right\}$$
$$= \sum_{i=1}^{n} \left\{ y_i \log \mu_i + k \log k - (k + y_i) \log(k + \mu_i) + \mathsf{dlg}(y_i, k) - \log y_i! \right\}$$

Notice here that for fixed values of k we have a linear exponential family model and consequently a generalized linear model.

Modelling the μ_i 's with a linear predictor $\eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$ and link function $g(\mu_i) = \eta_i$ we obtain the following score equations for mle:

$$\frac{\partial \ell}{\partial \beta_j} = \sum_{i=1}^n \left\{ \frac{y_i}{\mu_i} - \frac{k+y_i}{k+\mu_i} \right\} \frac{\partial \mu_i}{\partial \beta_j}$$
$$= \sum_{i=1}^n \frac{(y_i - \mu_i)}{\mu_i (1 + \frac{\mu_i}{k})} \frac{1}{g'(\mu_i)} x_{ij}$$

$$\frac{\partial \ell}{\partial k} = \sum_{i=1}^{n} \left\{ \mathsf{ddg}(y_i, k) - \log(\mu_i + k) - \frac{k + y_i}{k + \mu_i} + \log k + 1 \right\}$$

The score equations for β are the usual quasi-score equations for a glm with

$$V(\mu) = \mu(1 + \frac{\mu}{k})$$

and

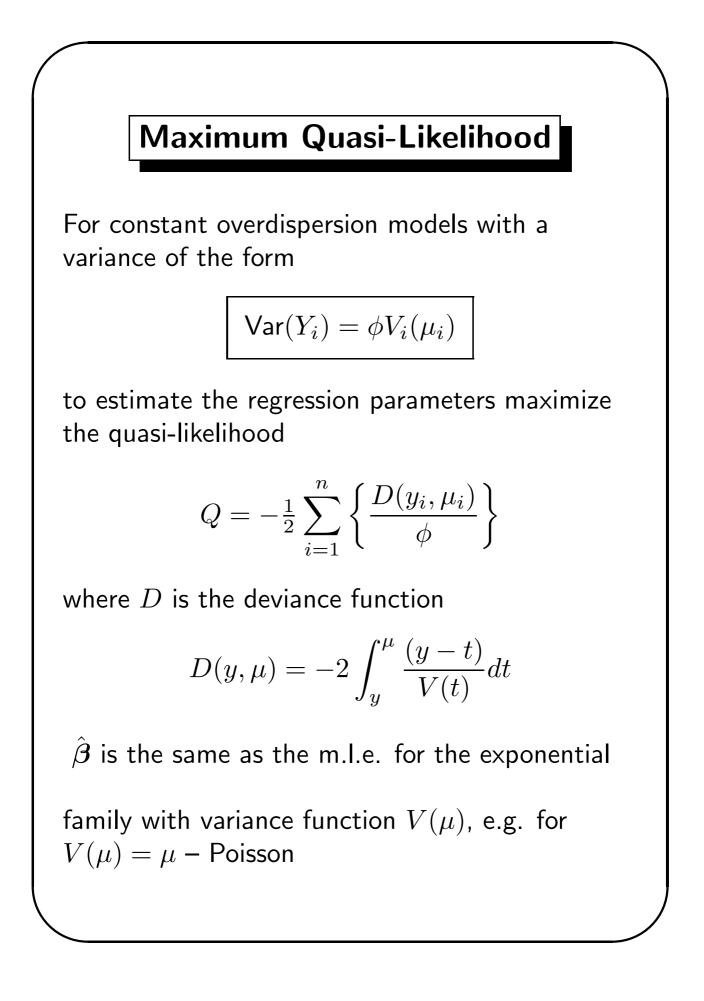
 $g(\boldsymbol{\mu}) = \eta$

and so provide a simple approach for fitting negative binomial regression models using a Gauss-Seidel approach:

- 1. For a fixed value of k, estimate β using a standard glm fit (IRLS) with a variance function $V(\mu) = \mu + \mu^2/k;$
- 2. for fixed β , and hence μ , estimate k using a Newton-Raphson iterative scheme

$$k^{(m+1)} = k^{(m)} - \left(\frac{\partial \ell}{\partial k} \middle/ \frac{\partial^2 \ell}{\partial k^2}\right) \Big|_{k^{(m)}}$$

3. iterating over 1 and 2 until convergence.



The overdispersion parameter ϕ is estimated by equating the Pearson X^2 statistic to the residual degrees of freedom.

1. overdispersed binomial model

$$\widetilde{\phi} = \frac{1}{(n-p)} \sum_{i=1}^{n} \frac{(y_i - m_i \widehat{\pi}_i)^2}{m_i \widehat{\pi}_i (1 - \widehat{\pi}_i)}$$

2. overdispersed Poisson model

$$\widetilde{\phi} = \frac{1}{(n-p)} \sum_{i=1}^{n} \frac{(y_i - \widehat{\mu}_i)^2}{\widehat{\mu}_i}$$

The standard errors of the $\widehat{\beta}$ will be as for the non-dispersed model inflated by $\sqrt{\widetilde{\phi}}$.

Extended Quasi-Likelihood (EQL)

For $Var(Y_i) = \phi_i(\boldsymbol{\gamma})V_i(\mu_i, \boldsymbol{\lambda})$, the extended quasi-likelihood (EQL) criterion (Nelder and Pregibon 1987) involves maximizing

$$Q^{+} = -\frac{1}{2} \sum_{i=1}^{n} \left\{ \frac{D(y_{i}, \mu_{i})}{\phi_{i}} + \log\left(2\pi\phi_{i}V_{i}(y_{i})\right) \right\},\$$

where D is the deviance function

$$D(y,\mu) = -2 \int_{y}^{\mu} \frac{(y-t)}{V_{i}(t)} dt.$$

Beta-binomial variance function

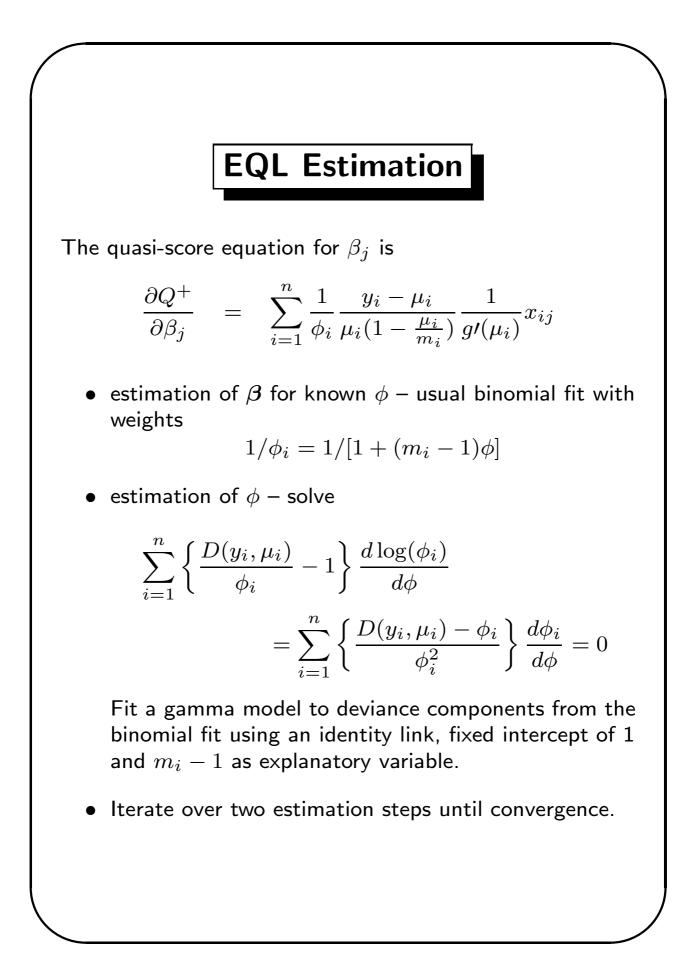
$$V_i(t) = t(1 - t/m_i)$$

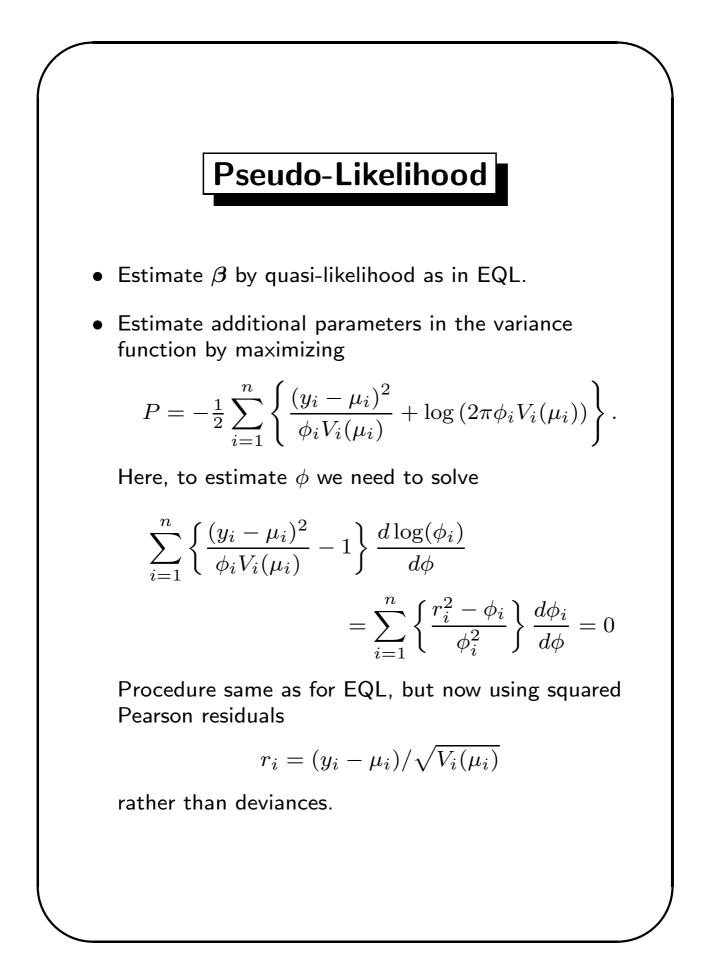
 and

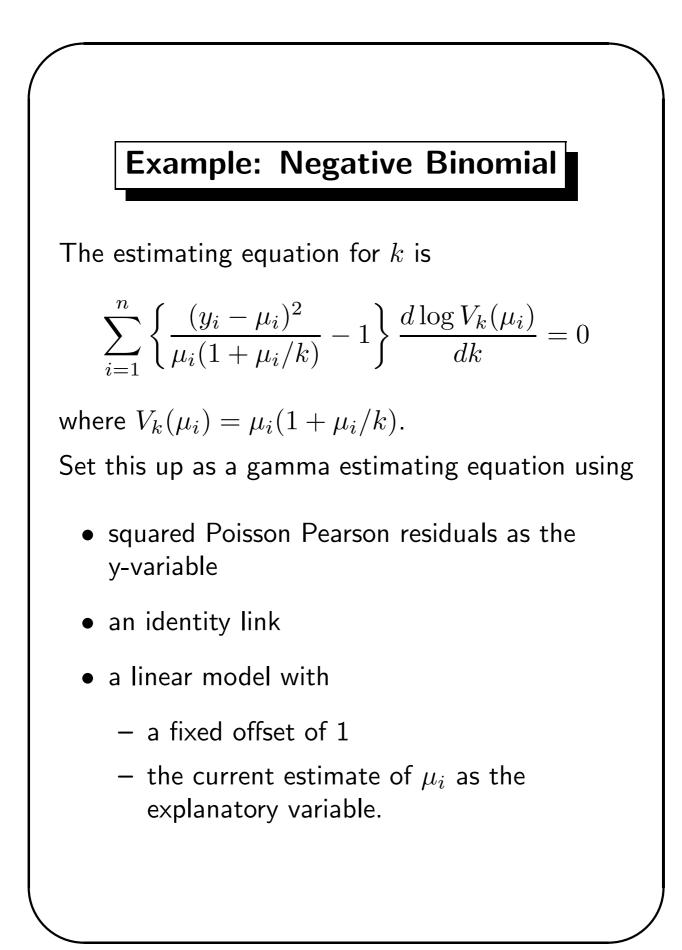
$$\phi_i = 1 + (m_i - 1)\phi$$

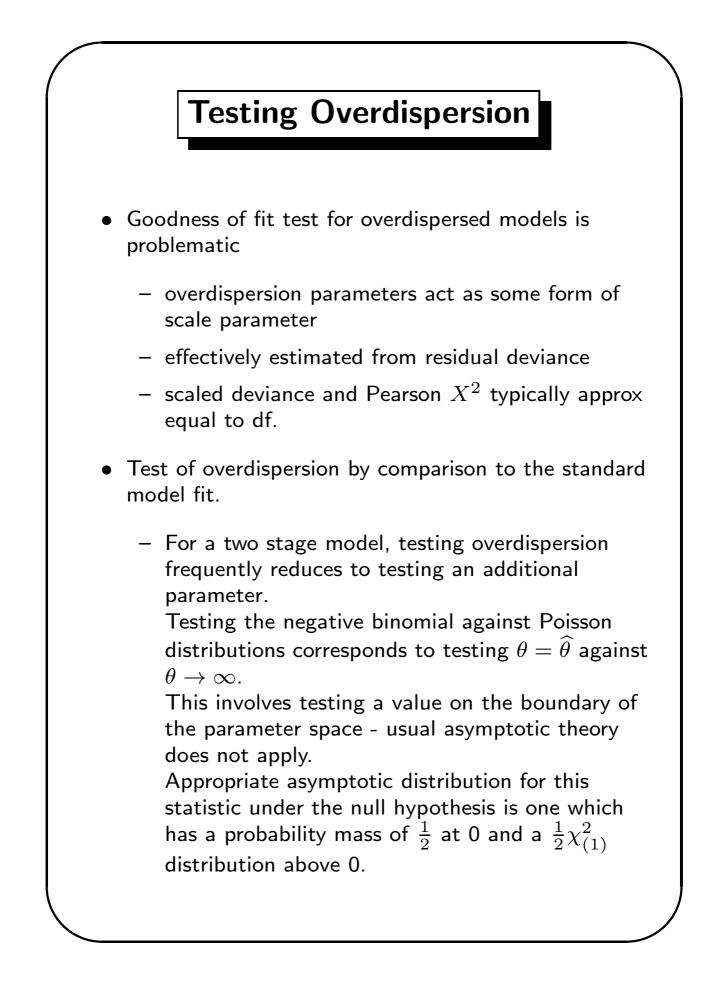
giving a binomial deviance function, $D_B(y_i,\mu_i)$ and

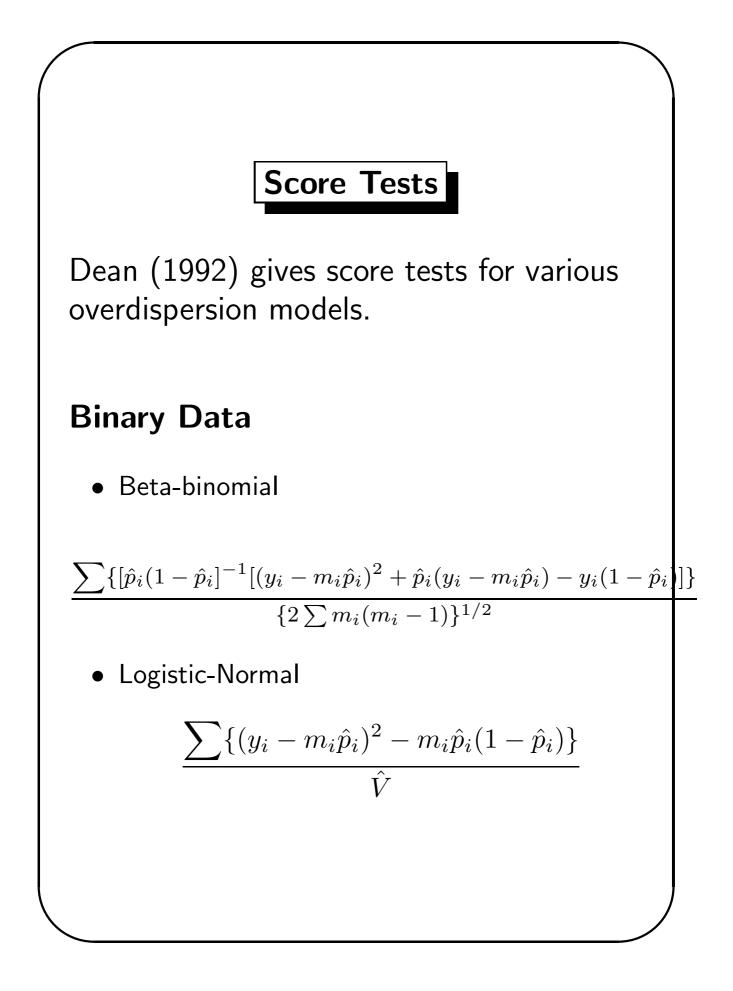
$$Q^{+} = -\frac{1}{2} \sum_{i=1}^{n} \left\{ \frac{D_{B}(y_{i}, \mu_{i})}{\phi_{i}} + \log \left[2\pi \phi_{i} y_{i} \left(1 - \frac{y_{i}}{m_{i}} \right) \right] \right\}$$











Count Data

• Constant overdispersion

$$\frac{1}{\sqrt{2n}} \sum \left\{ \frac{(y_i - \hat{\mu}_i)^2 - y_i}{\hat{\mu}_i} \right\}$$

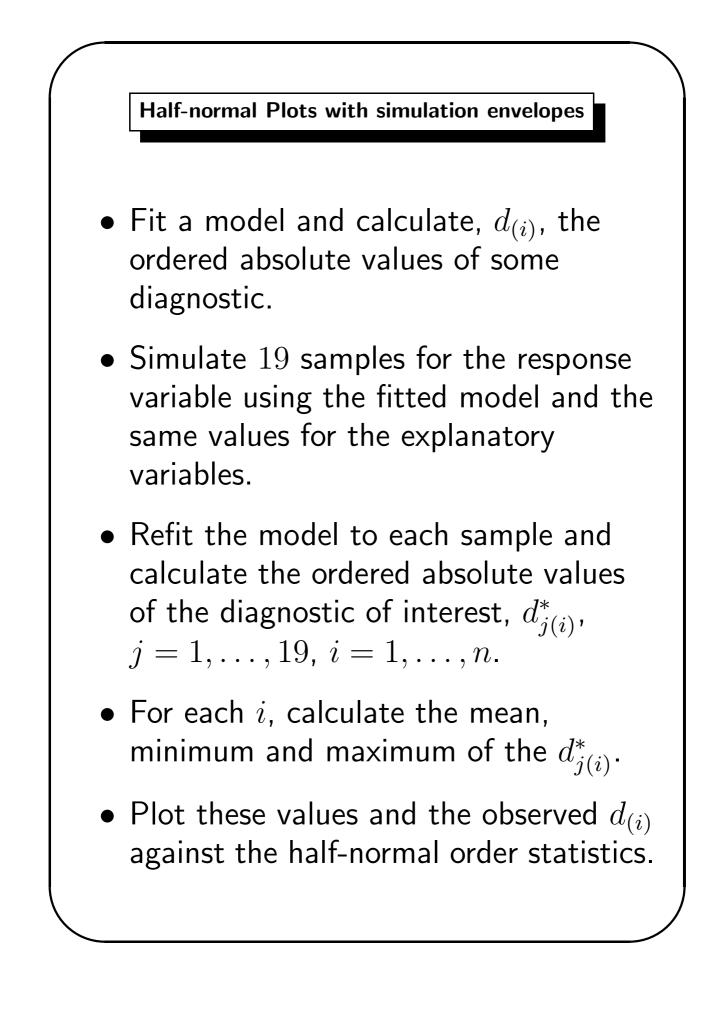
• Negative Binomial

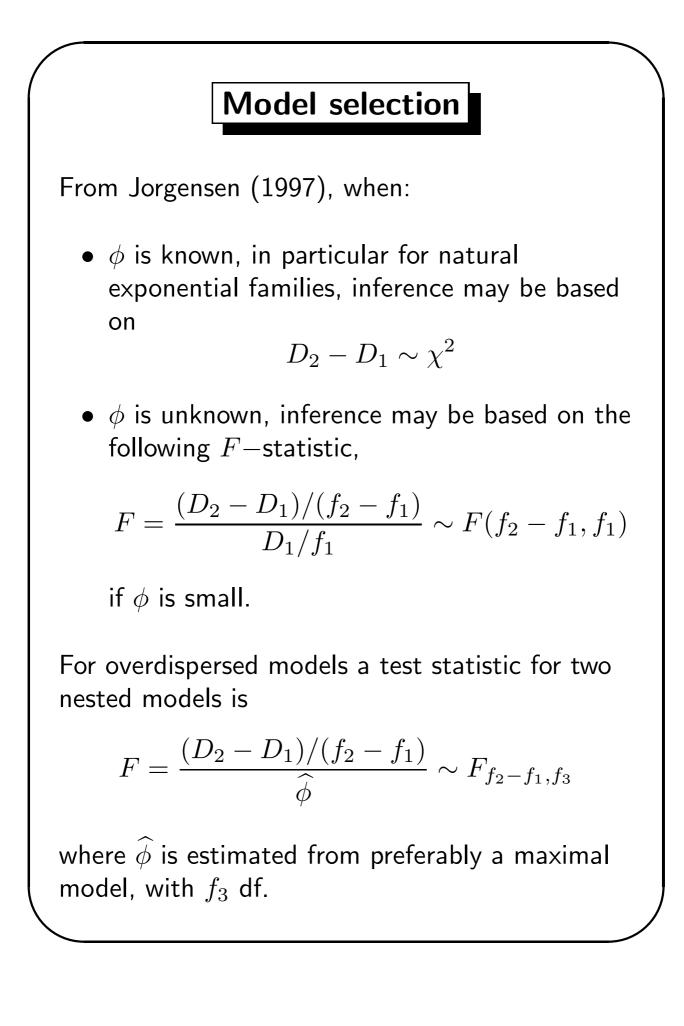
$$\frac{\sum\{(y_i - \hat{\mu}_i)^2 - y_i\}}{\{2\sum \hat{\mu}_i^2\}^{1/2}}$$

• Poisson-lognormal

$$\frac{\sum\{(y_i - \hat{\mu}_i)^2 - \hat{\mu}_i\}}{\{2\sum \hat{\mu}_i^2\}^{1/2}}$$

She also gives adjusted versions which take account of the estimation of the mean required to compute the statistics.

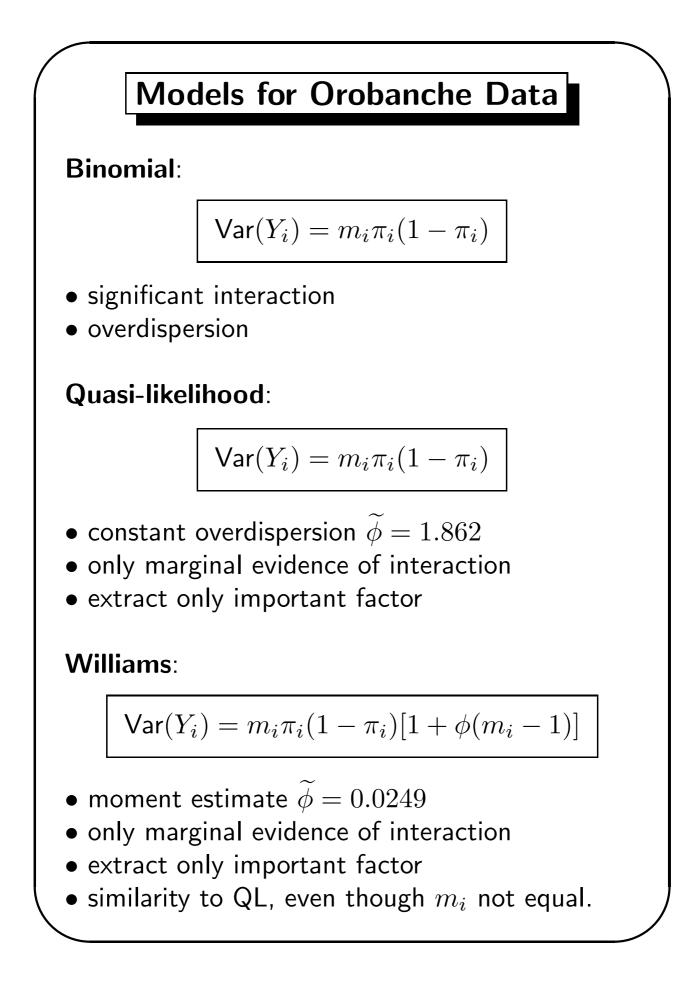


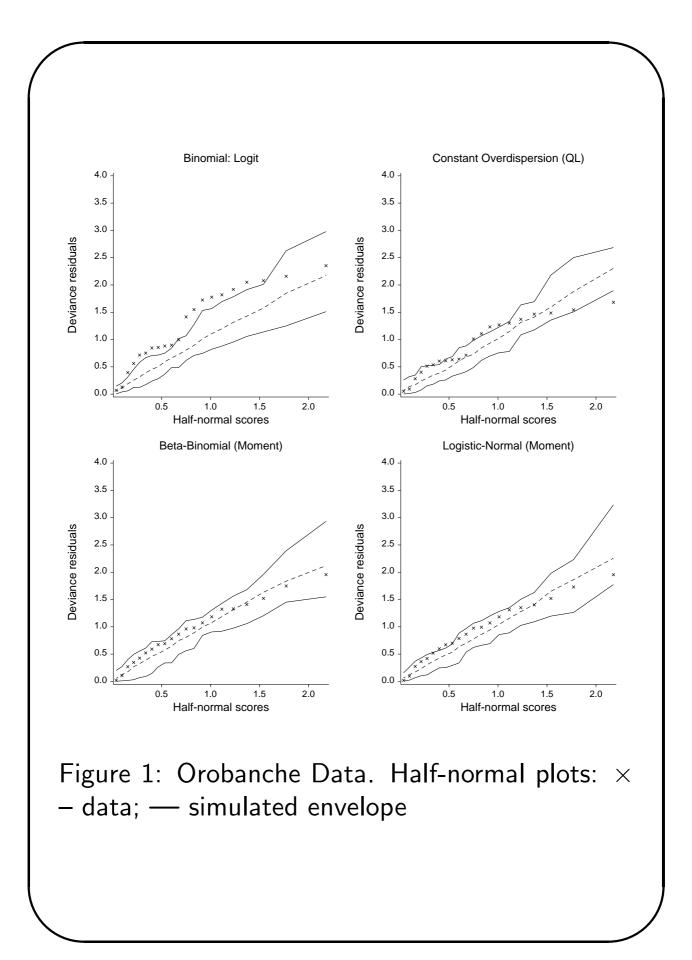


Then for an overdispersion parameter estimated from fitting the full model:

- fix its value
- weight the observations by $w_i = \frac{1}{\phi_i}$
- fit different sub-models
- the difference in the deviance for two alternative (nested) models is compared with percentage points of the F; non-significant result ⇒ the two models cannot be distinguished
- Many interesting comparisons involve non-nested models
- Use of Akaike Information Criterion (AIC) or Bayes Information Criterion (BIC) for model selection

 $AIC = -2 \log L + 2$ (number of fitted parameters) $BIC = -2 \log L + \log n$ (number of fitted parameters)



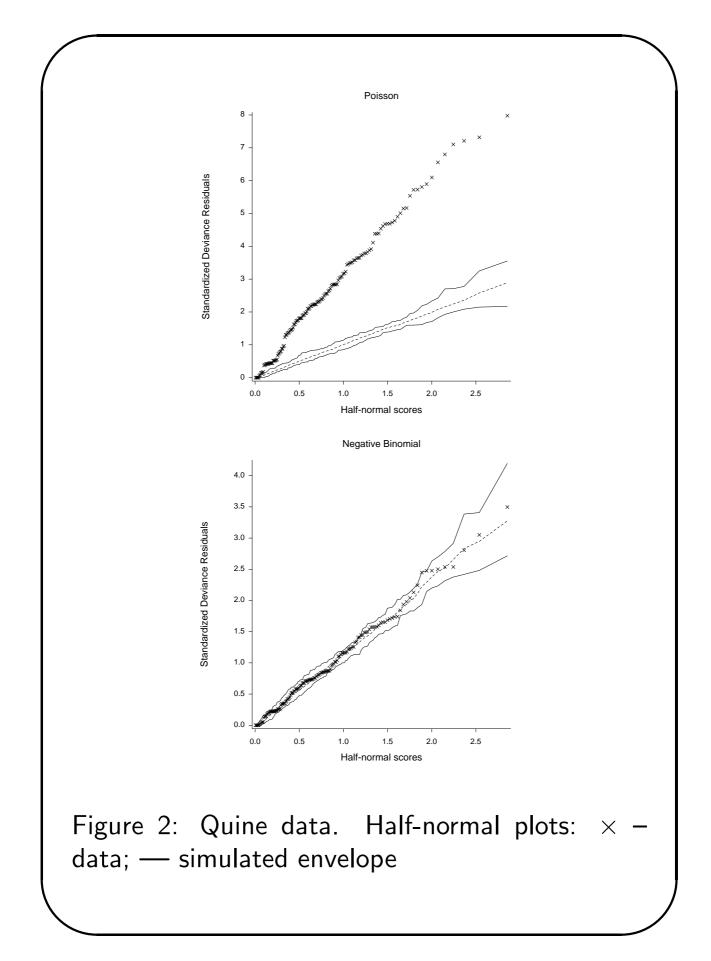


Quine's School Absence Data

Aitkin et al (1989) describe a data set on absence from school from a Sociological study of Australian Aboriginal and white children. The response variable of interest is the number of days absent from school cross-classified by age (A, 4 levels), sex (S, 2 levels), cultural group (C, 2 levels) and learning rate (L, 2 levels).

- Using a Poisson model the residual deviance is very large even for the maximal model Deviance=1173.9 on 118 df.
 ⇒ strong evidence of overdispersion.
- The negative binomial distribution provides a possible overdispersion model for this data Deviance=167.4 on 118 df.

Generalized Linear Models Course: Session 5



Random effect models

- In many applications the overdispersion mechanism is assumed to be the same for all of the observations.
- However, in some applications it is quite conceivable that the overdispersion may be different in different subgroups of the data.
- Explicit models for the variance, and hence overdispersion, are easily handled by an additional model for the scale parameter of the form

$$h(\phi_i) = \boldsymbol{\gamma}^T \mathbf{z}_i$$

- link function h, usually the identity or the log.
- vector of explanatory variables z_i may include covariates in the mean model giving great flexibility for joint modelling of the mean and dispersion.
- estimation can proceed by either EQL or PL using a gamma estimating equation for γ

Generalized linear mixed models

Another natural way to extend the category of two-stage models is to add more complex random effects structures in the linear predictor, taking

$$\eta_i = \boldsymbol{\beta}^T \mathbf{x}_i + \boldsymbol{\gamma}^T \mathbf{z}_i$$

where β is a vector of fixed effects, γ is a vector of random effects and \mathbf{x}_i and \mathbf{z}_i are corresponding vectors of explanatory variables.

- Assuming that these random effects are normally distributed gives a direct generalization of the standard linear mixed model for normally distributed responses to what is commonly called the generalized linear mixed model (GLMM).
- Estimation within this family is non-trivial and a number of different approaches have been proposed, including penalised quasi-likelihood, restricted maximum likelihood and Bayesian methods using Markov chain Monte Carlo.
- In some simple models with nested random effects, maximum likelihood estimation is possible.

- In many situations the assumption of normality for the random effects is neither natural nor computationally convenient and Lee & Nelder (1996) propose an extension of GLMMs to hierarchical generalized linear models.
 - the random components can come from an arbitrary distribution, although they particularly favour the use of a distribution conjugate to that of the response.
 - estimation is based on *h*-likelihood, a generalization of the restricted maximum likelihood method used for standard normal linear mixed model.
 - such models are also easily handled within the Bayesian paradigm using Markov chain Monte Carlo methods
 - the non-parametric maximum likelihood approach can also be extended to these more complex models

