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Two-state (survival) model

Survival analysis in epidemiology = observing individuals
over time, focusing on the occurence of a event of interest
(death, occurrence of a disease or a complication,...) and
time of occurrence

The occurrence of the event of interest is a transition from
one state to another

-State 0 State 1

Alive

Healthy

Dead

Onset of disease

Death
α01(t)

Diseased



Two-state (survival) model

Positive random variable T = time from a given origin (in
state 0 at time 0) to the occurrence of the event “death”
If X = (Xt , t ≥ 0) is a stochastic process with Xt the state
occupied by an individual at time t ≥ 0, Xt ∈ S = {0,1},
then T is the smallest time at which the process is not in
the initial state 0 anymore

T := inf{t : Xt 6= 0}

Hazard rate function→ transition intensity

λ(t) = lim∆t→0
P(t ≤ T < t + ∆t |T ≥ t)

∆t
= α01(t)



Two-state (survival) model

Cumulative hazard function→ cumulative transition
intensity

Λ(t) =

∫ t

0
λ(u)du = A01(0, t)

Survival function or distribution function→ transition
probabilities

S(t) = P(T > t) = exp[−Λ(t)] = P(Xt = 0|X0 = 0) = P00(0, t)

F (t) = P(T ≤ t) = 1−S(t) = P(Xt = 1|X0 = 0) = P01(0, t)

Transition probability matrix

P(0, t) =

(
P00(0, t) P01(0, t)

0 1

)
Inference for hazard rate and survival functions taking into
account incomplete observation of event histories
(right-censoring, left-truncation, ...)



Multi-states model : examples

Generalization of survival models (two-state models) :
more than one transition between more than two states

Multi-state model (MSM) = model of continuous-time
stochastic process allowing individuals to move among a
finite number of states

Extensive litterature on MSMs
Books : ABGK (1993), Hougaard (2000), Aalen, Borgan
and Gjessing (2008), Beyersmann, Schumacher and
Allignol (2012)

Reviews : Commenges (1999), Hougaard (1999),
Andersen and Keiding (2002)

Special Issues of : Statistical Methods in Medical Research
on MSMs (2002) ; Journal of Statistical Software (2011)



Multi-states model : examples

Competing risks model : one transient state (0: alive) and
several absorbing states representing different causes of
“deaths”
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Multi-states model : examples

Splitting the initial state into two or more states gives a
progressive multi-state model
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HIV+
asymptomatic

HIV+
symptomatic
non AIDS
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Multi-states model : examples

Illness-death model : very useful in epidemiology to study
both incidence of a disease and the mortality rate

α01(t) : incidence of dementia
α02(t) : mortality rate for healthy
α12(t) : mortality rate for demented
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Multi-states model : examples

Bi-directional illness-death model : possibility of recovery
from diseased state
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Multi-states model : progression of HIV infection, HIV
diagnosis, inclusion in a cohort and death
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Stochastic processes and filtration

Continuous-time stochastic process X = (Xt , t ≥ 0)

We should think of a filtration as a flow of information. The
σ-algebra Ft contains the events that can happen "up to
time t". The filtration defined by

FX
t = σ(Xs : s ≤ t)

is called the filtration generated by X or the natural filtration
of X (keep tracks of the "history" of the process)
A multi-state process is a process which can take a finite
number of states; that is, for any t , the variable Xt has
values in S = {0,1, . . . ,K}.
The law of a multi-state process is defined by its finite
dimensional distribution:

P(Xt1 = j1,Xt2 = j2, . . . ,Xtn = jn),n ∈ N



Specification of multi-state process

A multi-state model is fully characterized through

Transition probabilities between state h and state j :

Phj(s, t ;Fs−) = P(Xt = j |Xs = h,Fs−), for s < t

Transition intensities

αhj(t ;Ft−) = lim∆t→0
Phj(t , t + ∆t ;Ft−)

∆t
Cumulative (integrated) transition intensities

Ahj(t ;Ft−) =

∫ t

0
αhj(u;Fu−)du



Markov processes

Markov assumption : the future and the past of the process
are independent given its present state

Phj(s, t ;Fs−) = Phj(s, t) = P(Xt = j |Xs = h) s < t , h, j ∈ S, h 6= j

and Phh(s, t) = 1−
∑

j 6=h Phj(s, t)

P(s, t) = {Phj(s, t)} matrix of transition probabilities

Transition intensities are then defined as:
αhj(t) = lim∆t→0Phj(t , t + ∆t)/∆t , h 6= j , and
αhh(t) = −

∑
j 6=h αhj(t);

∑
j 6=h αhj(t) is the hazard function

associated with the distribution of the sojourn time h.

a(t) = {αhj(t)} matrix of transition intensities

A(t) = {Ahj(t)} matrix of cumulative transition intensities,
where Ahj(t) =

∫ t
0 αhj(u)du



Relationship between transition probabilities and
intensities

Chapman-Kolmogorov equation:
P(s, t) = P(s,u)P(u, t), s < u < t

P(s, t) is the unique solution of the Kolmogorov forward
differential equation: ∂

∂t P(s, t) = P(s, t)a(t); P(s, s) = I

P(s, t) can be recovered from the transition intensities
through product integration

P(s, t) =
∏

u∈(s,t]
(I + dA(u))

where
∏

is a product integral



Relationship between transition probabilities and
intensities

For simple models, such as the illness-death model, the
transition probabilities has explicit expression

P00(s, t) = e−[A01(s,t)+A02(s,t)]

P11(s, t) = e−A12(s,t)

P01(s, t) =
∫ t

s P00(s,u)α01(u)P11(u, t)du
Particular case : homogeneous Markov chain
a(t) is constant; that is αhj(t) = αhj does not depend on
time t , then

P(s, t) = P(0, t − s) = P(t − s)
The solution of Kolmogorov equation is : P(t) = eta

If the transition intensities matrix a can be diagonalized,
then P(t) = V diag(eρ0t , ...,eρK t ) V−1

Explicit formulas for the illness-death model



Aalen-Johansen estimator
Nhj(t): number of observed direct transitions from state h to
state j up to time t ; Yh(t): number of individuals under
observation in state h just before time t

dA(t) matrix of elements d(Ahj(t))h,j = (αhj(t))h,jdt

Nelson-Aalen estimator of the cumulative transition intensities:

dÂhj(t) =
dNhj(t)
Yh(t)

Âhj(t) =
∑
u≤t

dÂhj(t), h 6= j and Âhh(t) = −
∑
h 6=j

Âhj(t)

Aalen-Johansen estimator of the transition probabilities : Â(t) is
a matrix of step-functions with finite number of jumps in (s, t ]

P̂(s, t) =
∏

s<u≤t
(I + dÂ(u))



Special case : Illness-death model

Aalen-Johansen estimators of P00(s, t) and P11(s, t) are
equal to the corresponding Kaplan-Meier estimators

P̂00(s, t) =
∏

s<u≤t (1− dÂ01(u)− dÂ02(u))

P̂11(s, t) =
∏

s<u≤t (1− dÂ12(u))

P̂01(s, t) =
∑

s<u≤t P̂00(s,u−)dÂ01(u)P̂11(u+, t)

Then since P̂02(s, t) = 1− P̂00(s, t)− P̂01(s, t) and
P̂12(s, t) = 1− P̂11(s, t)

P̂02(s, t) =
∑

s<u≤t P̂00(s,u−)dÂ01(u)P̂11(u+, t)
+
∑

s<u≤t P̂00(s,u−)dÂ02(u)

P̂12(s, t) =
∑

s<u≤t P̂11(s,u−)dÂ12(u)



Semi-Markov process

The most used semi-Markov process can be specified by:

Phj(s, t ,Th) = P(Xt = j |Xs = h,Th), s < t

αhj(t ,Th) = lim∆t→0Phj(t , t + ∆t ,Th)/∆t

These quantities are random and we do not have the
Kolmogorov equations.
In general we may still be able to derive transition
probabilities from transition intensities but the theory is
more complex.
Clock reset models : the relevant time is the time spent in
the current state (the clock is "reset" to 0 each time a
patient enters a new state)



Semi-Markov model : an example

0: HIV- 1: HIV+ 2: AIDS
α01(t) α12(τ)- -

Figure: Progressive three-state Model: if τ = t this is a Markov model;
if τ is the time since the 0→ 1 transition this is a semi-Markov model.



Multistate models for a population

States and time
Associate to each subject i of a population a multistate
process X i = (X i

t )t≥0 with law specified by ai(.).
States of the X is and time t have same meaning for all the
subjects.
However, several choices of t are possible: t may be the
calendar time or time since a subject-specific event; if the
event is birth, t is age.
Heterogeneity of intensities
The population may be homogeneous or heterogeneous.
Heterogenity may be modelled as depending of observed
covariates Zi(t): αi

hj(t) = φhj(αhj0(t),Zi(t))

Proportional intensity assumption:
αhj (t ,Zi (t)) = αhj0(t)eβhj Zi (t)

Additive intensity αhj (t ,Zi (t)) = αhj0(t) + βhj (t)Zi (t)



Patterns of observation

Selection of the sample

For estimation purpose we have to draw a sample of size n
from a population.

It often happens that subjects can enter the sample only if
they are in a given state.

For instance in an illness-death model the study sample
may be a random sample of healthy subject. The condition
is:

X i
ti0 = 0

This is a kind of left-truncation which must be taken into
account for inference.



Patterns of observation

Left- and right-censoring
Subject i may be first observed at time Li until time Ci .

We observe:
(X i

t ,Li ≤ t ≤ Ci)

If Li = 0 this the extension of right-censoring to multistate
processes.



Patterns of observation

Discrete-time observations

We may consider that the state of the process i is
observed at only a finite number of times V i

0,V
i
1, . . . ,V

i
m.

This typically happens in cohort studies where fixed visit
times have been planned. In such cases the exact times of
transitions are not known; it is only known that they
occurred during a particular interval; these observations
are said to be interval-censored.

It is also possible that the state of the process is not
exactly observed but it is known that it belongs to a subset
of {0,1, . . . ,K}



Patterns of observation

Mixed continuous and discrete-time observations

The most common pattern of observation is in fact a
mixing of discrete and continuous time observations.

This is because most multistate models include states
which represent clinical status and one state which
represents death: most often clinical status is observed at
discrete times (visits) while the (nearly) exact time of death
can be retrieved.

It may also happen that some events other than death are
observed exactly.



Likelihood

Using the likelihood approach for inference taking into
account selection and censoring.

The likelihood can be written easily in terms of the Phj(., .)
and the αhj(.) under the assumption of

ignorability

conditional on the state at the first observation time V0

the processes X is are independent

the processes are Markov



Likelihood
Likelihood: continuous-time observations

The process X is continuously observed from V0 to C. We
observe that transitions have occured at (exactly) times
T1,T2, . . . ,Tm. With the convention T0 = V0, the likelihood
(conditional on X (V0)) is:

L = [
m−1∏
r=0

PX(Tr ),X(Tr )(Tr ,Tr+1−)αX(Tr ),X(Tr+1)(Tr+1)]PX(Tm),X(Tm)(Tm,C).

Likelihood: discrete-time observations Observations of X

are taken at V0,V1, . . . ,Vm. We write the likelihood as if the
Vj were fixed (ignorability):

L =
m−1∏
r=0

PX(Vr ),X(Vr+1)(Vr ,Vr+1).



Likelihood

Likelihood: Mixed discrete-continuous time observations

For simplicity we give the likelihood when the process is
observed at discrete times but time of transition towards
one absorbing state, representing generally death, is
exactly observed or right-censored. Denote by K this
absorbing state.
Observations of X are taken at V0,V1, . . . ,Vm and the vital
status is observed until C ( C ≥ Vm). Let us call T̃ the
follow-up time that is T̃ = min(T ,C), where T is the time
of death; we observe T̃ and δ = I{T ≤ C}.

The likelihood is:

L =
m−1∏
r=0

PX(Vr ),X(Vr+1)(Vr ,Vr+1)

∑
j 6=K

PX(Vm),j (Vm,T̃−)αj,K (T )
δ.



Example: likelihood in the illness-death model

If the subject starts in state “health”, has never been
observed in the “illness” state and was last seen at visit L
(at time VL) the likelihood is:

L = P00(V0,VL)[P00(VL, T̃ )α02(T̃ )δ + P01(VL, T̃ )α12(T̃ )δ]

If the subject has been observed in the illness state for the
first time at VJ then the likelihood is:

L = P00(V0,VJ−1)P01(VJ−1,VJ)P11(VJ , T̃ )α12(T̃ )δ.



Likelihood inference

Once we have a likelihood L(a(.),X ), several approaches
for getting estimators can be used

Non-parametric: no restriction on a(.)
Parametric: a(.) ∈M
Smooth non-parametric by smoothing a non-parametric
estimate
Smooth non-parametric by penalized likelihood
Bayesian approach

The non-parametric methods may be combined with a
parametric form for effects of covariates leading to
semi-parametric models.

αhj(t ,Z ) = αhj,0(t) exp (βhjZ )

P̂(s, t ; Z ) =
∏

s<u≤t
(I + dÂ(u; Z ))



Case with continuous time observations

If transition times are exactly observed or right-censored,
the problem can be split in as many survival problems as
there are transitions.

For instance if subject i enters state h at T i
h and makes a

transition from state h to state j at T i
j his likelihood

contribution to estimation of αhj (.) is

e
−

∫ T i
j

T i
h
αhj (u)du

αhj (T i
j )

If a subject makes a transition to another state it is
considered as censored.

Estimation of αhj(.) can be done by survival methods
allowing left-truncation (delayed entry) and right-censoring.
Estimation may be parametric or semi-parametric (Cox
model).



Illness-death model
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An example : Transplant treatment of patients with
blood cancer

From de Wreede, Fiocco and Putter (Journal of Statistics
Software, 2011, vol 38, Issue 7)

 



An example : Transplant treatment of patients with
blood cancer

Pronostic factors for all patients
Pronostic factor Categories n(%)
(name in data)
Donor recipient no gender mismatch 1734 (76)
(match) gender mismatch 545 (24)

Prophylaxis no 1730 (76)
(proph) yes 549 (24)

Year of transplant 1985-1989 634 (28)
(year) 1990-1994 896 (39)

1995-1998 749 (33)

Age at transplant (years) ≤ 20 551 (24)
(agec1) 20-40 1213 (53)

> 40 515 (23)



Package mstate

Estimation and prediction (non-parametric and
semi-parametric) : cumulative transition intensities,
transition probabilities, prediction
Need to make a dataset with a line for each transition (data
preparation)

 



Package mstate : semi-parametric models
Incorporate covariate information in Cox PH models

Separate Cox models for each of the transitions

αhj (t ; Z ) = αhj,0(t) exp(βhjZ )

Build appropriate subsets of data and estimate covariate
vector and baseline intensity for each transition (standard
software)

Transition-specific covariates
Model all transitions in a single Cox regression model,
using stratified regression and transition-specific covariates

αhj (t ; Zhj ) = αhj,0(t) exp(βZhj )

Obtain different covariate effect estimates accross transition
(transition-specific covariates)
Obtain a single effect estimate assumed to be common for
all transitions (stratified Cox regression using the global
covariate)



Package mstate
> library(mstate) 

> data("ebmt4") 

> ebmt <- ebmt4 

> head(ebmt4) 

  id  rec rec.s   ae ae.s recae recae.s  rel rel.s  srv srv.s      year agecl 

1  1   22     1  995    0   995       0  995     0  995     0 1995-1998 20-40 

2  2   29     1   12    1    29       1  422     1  579     1 1995-1998 20-40 

3  3 1264     0   27    1  1264       0 1264     0 1264     0 1995-1998 20-40 

4  4   50     1   42    1    50       1   84     1  117     1 1995-1998 20-40 

5  5   22     1 1133    0  1133       0  114     1 1133     0 1995-1998   >40 

6  6   33     1   27    1    33       1 1427     0 1427     0 1995-1998 20-40 

  proph              match 

1    no no gender mismatch 

2    no no gender mismatch 

3    no no gender mismatch 

4    no    gender mismatch 

5    no    gender mismatch 

6    no no gender mismatch 

 

 

> tmat <- transMat(x = list(c(2,3,5,6), c(4,5,6), c(4,5,6), c(5,6), c(), c()), 

names=c("Tx", "Rec", "AE", "Rec+AE", "Rel", "Death")) 

> tmat 

        to 

from     Tx Rec AE Rec+AE Rel Death 

  Tx     NA   1  2     NA   3     4 

  Rec    NA  NA NA      5   6     7 

  AE     NA  NA NA      8   9    10 

  Rec+AE NA  NA NA     NA  11    12 

  Rel    NA  NA NA     NA  NA    NA 

  Death  NA  NA NA     NA  NA    NA 



Package mstate
> msebmt <- msprep(data=ebmt, trans=tmat, time=c(NA, "rec", "ae", "recae", "rel", 

"srv"), status=c(NA, "rec.s", "ae.s", "recae.s",  "rel.s", "srv.s"), 

keep=c("match", "proph", "year", "agecl")) 

> msebmt[msebmt$id == 1, c(1:8, 10:12)] 

 

An object of class 'msdata' 

 

Data: 

  id from to trans Tstart Tstop time status proph      year agecl 

1  1    1  2     1      0    22   22      1    no 1995-1998 20-40 

2  1    1  3     2      0    22   22      0    no 1995-1998 20-40 

3  1    1  5     3      0    22   22      0    no 1995-1998 20-40 

4  1    1  6     4      0    22   22      0    no 1995-1998 20-40 

5  1    2  4     5     22   995  973      0    no 1995-1998 20-40 

6  1    2  5     6     22   995  973      0    no 1995-1998 20-40 

7  1    2  6     7     22   995  973      0    no 1995-1998 20-40 

 

 

 

 

 

> events(msebmt) 

$Frequencies 

        to 

from       Tx  Rec   AE Rec+AE  Rel Death no event total entering 

  Tx        0  785  907      0   95   160      332           2279 

  Rec       0    0    0    227  112    39      407            785 

  AE        0    0    0    433   56   197      221            907 

  Rec+AE    0    0    0      0  107   137      416            660 

  Rel       0    0    0      0    0     0        0              0 

  Death     0    0    0      0    0     0        0              0 



Package mstate

> covs <- c("match", "proph", "year", "agecl") 

> msebmt <- expand.covs(msebmt, covs, longnames=FALSE) 

> msebmt[msebmt$id == 1, -c(9, 10, 12:48, 61:84)] 

An object of class 'msdata' 

 

Data: 

  id from to trans Tstart Tstop time status      year year2.1 year2.2 year2.3 

1  1    1  2     1      0    22   22      1 1995-1998       1       0       0 

2  1    1  3     2      0    22   22      0 1995-1998       0       1       0 

3  1    1  5     3      0    22   22      0 1995-1998       0       0       1 

4  1    1  6     4      0    22   22      0 1995-1998       0       0       0 

5  1    2  4     5     22   995  973      0 1995-1998       0       0       0 

6  1    2  5     6     22   995  973      0 1995-1998       0       0       0 

7  1    2  6     7     22   995  973      0 1995-1998       0       0       0 

  year2.4 year2.5 year2.6 year2.7 year2.8 year2.9 year2.10 year2.11 year2.12 

1       0       0       0       0       0       0        0        0        0 

2       0       0       0       0       0       0        0        0        0 

3       0       0       0       0       0       0        0        0        0 

4       1       0       0       0       0       0        0        0        0 

5       0       1       0       0       0       0        0        0        0 

6       0       0       1       0       0       0        0        0        0 

7       0       0       0       1       0       0        0        0        0 

 



Package mstate

 

> msebmt[, c("Tstart", "Tstop", "time")] <- msebmt[, c("Tstart", "Tstop", 

"time")]/365.25 

> c0 <- coxph(Surv(Tstart, Tstop, status) ~ strata(trans), data=msebmt, 

method="breslow") 

> msf0 <- msfit(object=c0, vartype="greenwood", trans=tmat) 

 

> head(msf0$Haz) 

         time         Haz trans 

1 0.002737851 0.000000000     1 

2 0.008213552 0.000000000     1 

3 0.010951403 0.000000000     1 

4 0.013689254 0.000000000     1 

5 0.016427105 0.000443066     1 

6 0.019164956 0.001333142     1 

> tail(msf0$Haz) 

 

         time       Haz trans 

6199 12.48460 0.3800455    12 

6200 12.61602 0.3800455    12 

6201 13.02396 0.3800455    12 

6202 13.10609 0.3800455    12 

6203 13.12799 0.4255001    12 

6204 17.24572 0.4255001    12 

 

> plot (msf0, las=1, lty= rep(1:2, c(8,4)), xlab="Years since transplantation") 



Package mstate
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Package mstate
> pt0 <- probtrans(msf0, predt=0, method="greenwood") 

> summary(pt0) 

An object of class 'probtrans' 

 

Prediction from state 1 (head and tail): 

 

         time   pstate1      pstate2      pstate3 pstate4 pstate5      pstate6          se1 

1 0.000000000 1.0000000 0.0000000000 0.0000000000       0       0 0.0000000000 0.0000000000 

2 0.002737851 0.9995610 0.0000000000 0.0004389816       0       0 0.0000000000 0.0004388852 

3 0.008213552 0.9978051 0.0000000000 0.0021949078       0       0 0.0000000000 0.0009805148 

4 0.010951403 0.9956102 0.0000000000 0.0039508341       0       0 0.0004389816 0.0013851313 

5 0.013689254 0.9907814 0.0000000000 0.0079016681       0       0 0.0013169447 0.0020023724 

6 0.016427105 0.9863916 0.0004389816 0.0118525022       0       0 0.0013169447 0.0024274584 

           se2          se3 se4 se5          se6 

1 0.0000000000 0.0000000000   0   0 0.0000000000 

2 0.0000000000 0.0004388852   0   0 0.0000000000 

3 0.0000000000 0.0009805148   0   0 0.0000000000 

4 0.0000000000 0.0013143406   0   0 0.0004388852 

5 0.0000000000 0.0018550683   0   0 0.0007598375 

6 0.0004388852 0.0022674569   0   0 0.0007598375 

... 

 

time   pstate1   pstate2    pstate3   pstate4   pstate5   pstate6         se1 

513 12.48460 0.1366292 0.1650151 0.09331023 0.1593697 0.1811612 0.2645145 0.008491577 

514 12.61602 0.1320749 0.1650151 0.09331023 0.1593697 0.1811612 0.2690688 0.009350412 

515 13.02396 0.1320749 0.1650151 0.08997772 0.1593697 0.1811612 0.2724013 0.009350412 

516 13.10609 0.1265718 0.1650151 0.08997772 0.1593697 0.1811612 0.2779044 0.010455556 

517 13.12799 0.1265718 0.1650151 0.08997772 0.1521256 0.1811612 0.2851485 0.010455556 

518 17.24572 0.1265718 0.1650151 0.08997772 0.1521256 0.1811612 0.2851485 0.010455556 

 



Package mstate

 



The computational problem with interval censored
observations

Dealing with interval-censored data in multistate models



Two-state (survival) model with interval-censored data

Non-parametric estimation of the survival function
The equivalent of the Kaplan-Meier estimation for
interval-censored data was first proposed by Peto (1973),
and Turnbull (1976) then improved the numerical algorithm
to estimate the survival function (EM algorithm)
From the data {(Li ,Ri ], i = 1,2, ...,n} a set of
non-overlapping intervals {(q1,p1], (q2,p2], ..., (qm,pm]} is
generated over which S(t) is estimated : the NPMLE of
S(t) can decrease only on intervals (qj ,pj ].

PH model S(t ; Z ) = S0(t)exp(βZ ): estimation
(non-parametric) of the baseline survival function S0(t) and
of the regression coefficients (Finkelstein, 1986; Alioum
and Commenges, 1996; Goetghebeur and Ryan, 2000).



NPMLE of the survival curve

 



Illness-death model with interval-censored data

Observations pattern : times of transition from 0 to 1 are
interval-censored, but times to the absorbing state are
assumed to be known exactly or to be right-censored
If you’re just interested in α01, you can use survival
methods for interval censored data, but α01 will be
underestimated (e.g. incidence of dementia ; Joly et al.,
2002)
Problem with survival analysis: using death as
right-censoring leads to a biased estimates of age-specific
incidence of dementia
A more adapted model is an illness-death model
(Commenges et al., 1998; Commenges et al., 2004)



Incidence of Dementia : survival and illness-death
model

 



Parametric/Smooth non-parametric

Parametric approach : easy to implement using likelihood
methods
Smooth non-parametric via penalized likelihood (Joly et al.,
2002)

αhj(t ; Z ) = αhj,0(t) exp (βhjZ ),hj ∈ {01,02,12}

pl(α01(.), α02(.), α12(.);β01, β02, β12) =

L(αhj(.);βhj)− κ01

∫ +∞

0
[α′′01,0(u)]2du

−κ02

∫ +∞

0
[α′′02,0(u)]2du − κ12

∫ +∞

0
[α′′12,0(u)]2du



Parametric/Smooth non-parametric

NPMLE α̂01(.), α̂02(.), α̂12(.) are approximated using
M-splines

α̃hj(t) =
∑

l

θl
hjMl(t)

Λ̃hj(t) =
∑

l

θl
hj Il(t)

κ01, κ02, κ12 are estimated simultaneously by maximizing
the standard crossvalidation score

SmoothHazard : A new R package to fit illness-death model
(Weibull or penalized likelihood) for left-truncated and/or
interval-censored data (written by Tourraine, Joly and Gerds)



Package SmoothHazard

 

 



Package SmoothHazard

t0: left truncation time
t1: for diseased subjects, left endpoint of the censoring
interval; for non diseased subjects, right censoring time for
0->1 transition
t2: for diseased subjects, right endpoint of the censoring
interval; for non diseased subjects, right censoring time for
the disease event
t3: for subjects who died, time of death; for alive subjects,
censoring time for the death event

> library(SmoothHazard) 

> data(Paq1000) 

> head(Paq1000) 

  dementia death      t0       t1       t2       t3 certif gender 

1        1     1 72.3333 82.34014 84.73303 87.93155      0      0 

2        0     1 77.9167 78.93240 78.93240 79.60048      0      1 

3        0     1 79.9167 79.91670 79.91670 80.92423      0      0 

4        0     1 74.6667 78.64750 78.64750 82.93501      1      1 

5        0     1 76.6667 76.66670 76.66670 79.16636      0      1 

6        0     0 66.2500 71.38070 71.38070 84.16975      1      0 

 



Package SmoothHazard
> fit <- idm(formula02=Hist(time,event=death,entry=entry)~certif, 

+ formula01=Hist(time=list(L,R),event=dementia)~certif, 

+ data=d, hazard="Splines") 

> print(fit) 

Call: 

idm(formula01 = Hist(time = list(L, R), event = dementia) ~ certif,  

    formula02 = Hist(time, event = death, entry = entry) ~ certif,  

    data = d, hazard = "Splines") 

 

Illness-death model using a penalized likelihood approach with splines 

approximation for the intensity functions. 

 

number of subjects:  1000  

number of events '0-->1':  186  

number of events '0-->2' or '0-->1-->2':  724  

number of subjects:  1000  

number of covariates:  1 1 1  

 

Smoothing parameters: 

      transition01 transition02 transition12 

knots        7e+00        7e+00            7 

kappa        1e+06        5e+05        20000 

 

             coef SE.coef     HR          CI       Wald p.value 

certif_01 -0.4797  0.2053 0.6190 [0.41;0.93] 5.46092875 0.01945 

certif_02  0.1564  0.1265 1.1693 [0.91;1.50] 1.52834594 0.21636 

certif_12 -0.0682  0.2311 0.9341 [0.59;1.47] 0.08707806 0.76793 

 

                         Without cov  With cov 

Penalized log likelihood    -3073.08 -3069.819 

 

> plot(fit) 



Package SmoothHazard
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Package SmoothHazard

Other features of SmoothHazard for both Weibull model and
penalized likelihood

Plot baseline survival functions

Predict transition probabilities

Predict life expectancies (in state 0; for a non diseased
subject; for a diseased subject) at time s for a subject with
a given vector of covariates

Fit survival model using either a penalized likelihood
approach or a parametric (Weibull) approach from
left-truncated and interval-censored data



More complex models : Dementia-Institution-Death
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More complex models : Dementia-Institution-Death

Smooth non-parametric by penalized likelihood
Need some additional assumptions (Joly et al., 2009)

α14(t) = α04(t)eθ14 α23(t) = α01(t)eθ23

α24(t) = α04(t)eθ24 α13(t) = α02(t)eθ13

α34(t) = α04(t)eθ34

pl(α01(.), α02(.), α04(.); θ) =

L(α01, α02, α04; θ)− κ01

∫ +∞

0
[α′′01(u)]2du

−κ02

∫ +∞

0
[α′′02(u)]2du − κ04

∫ +∞

0
[α′′04(u)]2du



Panel data

States X i(t) of individual i(i = 1,2, ...,n) is only known at
discrete consecutive follow-up times t = (ti,0, ti,1, ...., ti,mi ), and
the exact time of transitions from one state to another is not
observed

Likelihood conditionally on X (ti,0)

n∏
i=1

mi∏
j=1

PX(ti,j−1),X(ti,j )(ti,j−1, ti,j ; Zi(ti,j−1))

If X (ti,mi ) = K (single absorbing state) and ti,mi is the exact
time of transition to K , then the expression of the last term
of the product is given by∑

l 6=K

PX(ti,mi−1),l(ti,mi−1, ti,mi ; Zi(ti,mi−1))αl,K (ti,mi )



Example of more complex multi-state models

Disablement process in the elderly (Paquid study)

 



HMM/NHMM with PCI

NHMM with piecewise constant intensities: partitioning
time into 2 or more intervals and assume constant intensity
in each interval

PIM : αhj (t ; Z (t)) = αhj0(t) exp (β′Z (t))
where αhj0(t) = αl

hj0 for τl−1 < t ≤ τl , (l = 1,2, ..., r)

The expressions of transition probabilities Phj (s, t) become
more complicated (even if we keep the idea of fitting of
homogeneous models to a series of r intervals)

This method needs prior specification of the cutpoints; the
choice of cutpoints should make sure that an appropriate
number of observations fall in all intervals



Programs and Packages for fitting HMM/NHMM with
PCI

MKVPCI
Fortran program (Alioum and Commenges, 2001)
Fitting general k-state Markov models (k − 1 transient
states and the k th state can be optionally chosen as an
absorbing state) with PCI and covariates
The output includes estimates of the baseline transition
intensities, regression coefficients, transition intensities in
time intervals (τl−1, τl ], l = 1,2, ..., r , together with their
estimated standard errors, and the results of the
multivariate hypotheses tests.



Example 2: disablement process in the elderly

File of input parameter for MKVPCI
disab.dat
15439
5
10
0 1 0 0 1
1 0 1 0 1
0 1 0 1 1
0 0 1 0 1
0 0 0 0 0
1
80.0
1 2 3 4 5 6 7 8 9 10
1
2
gender 0 1 2 3 4 5 6 7 8 9 10
educ 0 1 2 3 4 5 6 7 8 9 10
1
1
0



Example 2: disablement process in the elderly
Multi-state Markov model with piecewise constant intensities
Program developed by Ahmadou ALIOUM
ISPED - University Victor Segalen Bordeaux 2

Markov model with piecewise constant intensities : two periods
Data file : disab.dat
Number of records : 15439
Number of subjects : 3461
Number of states : 5
Number of transitions : 10
Number of artificial covariates : 1
Cut points : 80.000000
Number of observed covariates : 0
Number of parameters : 20
Exact transition times to the absorbing state : 1

Baseline transition intensities
Time intervals

Tau(0) - Tau(1) Tau(1) - Tau(2)
TRANSITION ESTIMATES STD ERROR ESTIMATES STD ERROR
1 –> 2 .28432 .01180 .57785 .04278
1 –> 5 .01099 .00274 .02167 .01165
2 –> 1 .17916 .00870 .09423 .01089
2 –> 3 .13516 .00661 .29438 .01282
2 –> 5 .02707 .00339 .04016 .00665
3 –> 2 .17757 .01238 .05033 .00475
3 –> 4 .07652 .00834 .14481 .00827
3 –> 5 .05382 .00775 .08822 .00711
4 –> 3 .10510 .02144 .04460 .00794
4 –> 5 .21518 .02759 .35568 .01823



R package msm

Package msm developped by Christopher H. Jackson
(Journal of Statistical Software, 2011, vol. 38, issue 8)
Markov model with any number of states and any pattern
of transitions to panel data : HMM, NHMM with PCI
Proportional intensities models : piecewise constant
time-dependant covariates
Exact death times, censored states (alive but in an
unknown disease state at the end of the study)
Hidden Markov models in which the states of the Markov
chain are not observed : observed data Xij are governed
by some probability distribution conditionally on the
unobserved state Sij

Tools for model assessment



Estimation of HIV incidence from a prevalent cohort

-

? ?

? ?
-

- -

-

-

? ??

- �

--
- ���

?

??

-
1 2 3

4 6

7 8 9

asymptomatic
VIH+

symptomatic
VIH+

AIDS

Inclusion
in the cohort

HIV
diagnosis

10

Death

5

ν(t)

Infection



Estimation of HIV incidence from a prevalent cohort

Infection occurs according to a non-homogeneous Poisson
process with intensity ν(t)

Non-homogeneous Markov process with piecewise
constant intensities

Data from a prevalent cohort study : a total of n subjects
were enrolled in the cohort by time T ∗

si time of first HIV positive test
Xi (ti0),Xi (ti1), . . . ,Xi (timi )

Sampling criterion : a subject i is enrolled only if ti0 ≤ T ∗

The number n is the realization of a random variable N,
and the observation of N = n brings information on ν(t)



Estimation of HIV incidence from a prevalent cohort

Conditionally on the occurrence of a certain number of
infections in the period [0,T ∗], the times of infection a iid
with density function
ν∗(t) = ν(t)/

∫ T∗
0 ν(u)du

Conditional on N = n, the likelihood of the trajectories of
observed subjects is
L1 =

∏n
i=1 Li/PI

where PI =
∫ T∗

0 ν∗(u)P∗(u)du,
and Li = P(si , ti0, xi0)

∏mi
j=1 PXi (ti,j−1),Xi (ti,j )(ti,j−1, ti,j)



Estimation of HIV incidence from a prevalent cohort

N follows a Poisson distribution with parameter
A =

∫ T∗
0 ν(u)P∗(u)du : L2 = P(N = n)

Full likelihood : L = L1 × L2

Smooth estimate of HIV is obtained by maximazing the
penalized log-likelihood :
pl(ν, α) = log L1 + log L2 − λ

∫
ν
′′

(u)2du



Estimation of HIV incidence from a prevalent cohort
Data from a hospital-based surveillance system of HIV infection
implemented since 1987 in Aquitaine region, Southwestern
France : homosexuals/bisexuals (λ = 100 ; GECSA,
1985-2000)

 



Concluding remarks

Methods for inference in MSM from selected sample
or/and interval-censored data are useful in epidemiology

Some software are now available for fitting simple MSM
models (mstate, msm, smoothhazard, among others)

Some challenges for modelling in the MSM framework

more complex processes

unobserved heterogeneity, clustering

dependant LTF or missing data

model checking and validation
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