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Aim of the course 
•  Provide basic concepts of the  
   Bayesian approach 

–  Subjective interpretation of probability 
–  Use of Bayes theorem in updating information 
–  Type of prior distributions 

•  Introduce the use of Bayesian methods  
    for data analysis 

•  Introduce to Monte Carlo (MC) and  
    Markov chain Monte Carlo (MCMC) simulations 



•  Three approaches to Probability 

–  Axiomatic (Kolmogorov) 
• Probability by definition and properties 

–  Relative Frequency (classical, objective) 
• Repeated trials 

–  Degree of belief (Bayesian, subjective) 
• Personal measure of uncertainty 

•  Problems 

–  The chance that the next Italian goverment will succeed  
–  The probability of rain today 

         



Bayes Theorem 
• Thomas Bayes 
• Published works by Bayes 
• Background on probabilities 
• Bayes Theorem 
• Applications  



Thomas Bayes 

•  Born in 1702, London 
•  Little childhood information 
•  Presbyterian Minister 
•  In 1742, elected fellow by 

the Royal Society of London 
•  Retired in 1752 
•  Died in April of 1761 



Written Work 

•  Only two works published during his life 
•  Divine Benevolence (1731) 
•  Introduction to the Doctrine of Fluxions (1736) 

•  He never published his mathematical works 
 
•  “The probability of any event is the ratio between the 

value at which an expectation depending on the 
happening of the event ought to be computed, and 
the chance of the thing expected upon it’s 
happening” 



Publishing of Bayes Theorem 

•  Richard Price examined
Bayes’ work after his death 

•  Responsible for the communication 
to the Royal Society on Bayes’ work 

•  An Essay Toward Solving a Problem 
in the Doctrine of Chances  



An Essay Toward Solving a Problem in 
the Doctrine of Chances 

–  a version of what becomes Bayes Theorem 

–  the definition of conditional probability 

–  If P (B) > 0, the conditional probability of A given 
B, denoted by P (A | B), is  

 
 
P(A | B) =  

P(A ∩   B)
P(B)



Among the conference participants, 
•  70% attended this morning course  
•  55% attended my course and  
•  45% attended both 

If a randomly selected participant attended this 
morning course, what is the probability he or 
she also attended my course?    

               P(afternoon | morning) =  
     P( morning and afternoon)/P(morning) 

 
         = .45 / .7       .6429  or 64.29% ≈



•  Pierre Simon Laplace 
French mathematician 
Responsible for current form of Bayes     
Theorem 
•  Bayes found the probability that x is 

between two values given a number of 
successes and failures 

•  Laplace found an expression for the 
probability of a number of future 
successes and future failures given the 
number of successes and failures 

•  Richard von Mises states, “We owe 
Bayes only the statement of the 
problem and the principle of the 
solution.  The theorem itself was first 
formulated by Laplace” 



Law of Total Probability 

•  Sometimes it is not possible to calculate P(A) 
however, it may be possible to find  

   P (A | B)  and P (A | Bc) for some event B  

•  Let  B be an event with P (B) > 0 and P (Bc) > 0  
Then for any event A: 

  P (A) = P (A | B) P (B) + P (A | Bc) P (Bc)
   



•  We know that P (A) = P (AB) + P (ABc)  
 
 
 
 
Substitute in the conditional probability 

   P (AB) = P (A | B)P (B) 

   P (ABc) = P (A | Bc)P (Bc)  
The Law of Total Probability then becomes: 

   P (A) = P (A | B)P (B) + P (A | Bc)P (Bc) 



An insurance company rents  
•  40% of the cars for its customers from agency I  
•  60% from agency II 

•  If 6% of the cars from agency I  
•  and 5% of the cars from agency II  
    break down 
What is the probability that a car rented by this 
company breaks down? 
 
P(car rented by insurance breaks down) 

   = (.4)(.06) + (.6)(.05) 
   = .054  = 5.4% 



Bayes Theorem 
Consider the sample space S of an experiment 
and a partition {B1, B2, …, Bn},  
with P (Bi) > 0, for i = 1, 2, …, n   
 
 
                                    
Then, for any event A of  S, with P (A) > 0 

   
P (Bk | A)   = 
 
 
P(Bk) is the prior probability  

P(Bk | A) is the posterior probability  
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•  Proof is very simple 

–  P(A | B) =                    , conditional probability  
 

–  Rearranged becomes: 
–  P (AB) = P (B) P (A | B) 
–  P (BA) = P (A) P (B | A) 

–  Therefore P (B)P (A | B) = P (A)P (B | A) 
–  Solve for the P (B | A) 

P (B | A) = 

P(B)
)P(AB
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•  A box contains 7 red and 13 blue balls.   
•  Two balls are selected at random and are discarded 

without their colors being seen.   
•  If a third ball is drawn randomly and observed to be red, 

what is the probability that both of the discarded balls 
were blue? 

•  Solve P (BB | R)    
=  

 
 

  =  

P(R | BB)P(BB)
P(R | BB)P(BB)+P(R | BR)P(BR)+P(R | RR)P(RR)
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Applications 
•  Diagnostic testing 

–  Tests identify if a person has a particular disease or not 
–  Tests are not always 100% correct 
–  If a person tests positive for a disease is he or she truly sick? 

•  A cancer is found in 1 in every 2000 people.  If a person has the 
disease w.p. 90% the test will result positive.  If a person does not 
have the disease, the test will result in a false positive 1% of the 
time.   

•  The probability that a person with a positive test really has cancer: 

P (Cancer | Positive Test) =  043.
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Introduction to Bayesian  
Statistical Inference 

•  Statistical inference is used to draw 
conclusions from known data in samples to 
populations for which data is unknown 

•  EXAMPLE: Find the probability that an African 
man’s height is over 1.75 meters 



•  If we have no info about this man, the 
probability is based on the proportion of 
Africans taller than 1.75 meters 
–  Frequentist approach 

•  However, if we have prior knowledge about 
the man, it must be factored into the 
probability 
–  If he plays basketball, the probability will be 

larger than population proportion 
–  Bayesian approach 



Frequentist approach to modelling 
 
We have some data Y, and want to know about θ 	

θ can be unknown parameters, missing data, latent variables, 

etc. Eg: sample of data from a normal distribution, what is 
the population mean? 

 
Frequentist: estimate θ through the likelihood: p(Y|θ) 
How likely is Y for given values of θ ?  
Use moment estimators or maximum likelihood. 
 
But we really want to know about p(θ|Y)  
 
 



Bayesian approach to modelling 
 

  p(θ|Y) = p(Y|θ) p(θ) / p(Y) 
 
p(θ) is the prior for θ 
What do we know about θ independently of the data?   
 
 
p(Y) = Σ p(θ) p(y|θ)   or     ∫ p(θ) p(y|θ) dθ 	

   i.e., the probability of the data for all values of θ 
(constant – calculate analytically or numerically) 



Why Bayes? 
Bayesian methods allow us to: 
•  Think differently about interpreting and estimating 

parameters (unknown           random) 
 “what are possible values of this parameter, based 
directly on the posterior distribution p(θ|Y)?” 

•  Combine prior information with the data 
 “what else do I know about θ?” 

•  Describe many sources of uncertainty in the model 
  “how sure am I about the inputs to my model?” 
•  Describe complex systems using hierarchical or  
    multi-level models 



Why Bayes? 

Bayesian computational methods  
(such as MCMC) allow us to: 
•  Use non-standard distributions as LHD 
•  Fit very complex non-linear models 
•  Obtain a very wide variety of estimates 
•  Make a very wide range of inferences, based 

directly on posterior probabilities  
   (CI, HP, Prediction) 
•  Avoids averaging over the unobserved values of x 
•  Coherent update of the info on θ 



Example: Estimating a proportion 

•  Data: Suppose that we observe n=29 sites 
with Y=22 presences of a species (and 7 
absences). What is the probability θ of 
presence of the species? 

  (Or: Suppose that we have n=29 patients;  
Y=22 survive and 7 die. What is the 
probability p of survival?)  

•  Unobserved: θ probability of success 
•  Likelihood: Y has a Binomial distribution 

    

•  Posterior:    P( Y | θ ) ∝ θy (1-θ)n-y 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
p

p    (1-p)22          7

p(Y|θ) ~ Bin(29, θ) 
p(Y=22|θ)∝θ22(1-θ)7 



The Beta Distribution 

    θ ~ Beta(a,b)  
  p(θ) ∝  θa-1 (1-θ)b-1 
  

    E(θ) = a/(a+b)     	
“unbiased Bayesian est.”  
Var(θ) = ab/{(a+b)2(a+b+1)}  
Mode(θ) = (a-1)/(a+b-2)   “Bayesian MLE” 

    a=b           mean= 0.5              symmetric 
 
 

Prior for θ:  Many choices: 
  - point estimate 
  - Beta distribution (continuous over range 0,1) 

  



                                        Beta distribution 
•  a<1, b<1            U-shaped   
•  a>1, b>1            Unimodal 
•  a<1, b≥1            Positive skewed 
•  a≥1, b<1            Negative skewed 
•  a=1, b>1            Stricktly increasing 
•  a>1, b=1            Strickly decreasing 



The Beta Distribution 
•  Match the plots to the distributions  
•  What are the posterior means, modes and variances? 
Beta(1,1)   Beta(2,2)   Beta(100,100)   Beta(2,1)   Beta(10,20)   Beta(9,1) 
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DAG: Binomial model 
•  Model 

Y ~ Binomial (θ, n) 
θ ~ Beta (a,b)   

 

Y 

n 
θ 

b a 



Priors for binomial model 
•  Prior: Some alternatives 

 1. Assume we ‘know nothing’ about θ, so we set a 
uniform prior θ~U[0,1] ,  equivalently, θ ~ Beta(1,1) 

 
 2. Based on past information, adopt a Beta(9,1) prior 

 
 3. Based on expert info, assume a Beta(100,100) prior 

 
 



Posterior for binomial model 
 

  P(θ | y) ∝ likelihood ×  prior 
      = θy (1-θ)n-y      × θa-1 (1-θ)b-1 
	
 	
 	
   = θy+a-1 (1-θ)n-y+b-1 

               = Beta(y+a, n-y+b) 

 
   E(θ ) = a  / (a + b)  

   E(θ | y) = a + y / (a + b + n ) 



Influence of prior on posterior 

                E(θ | y) = a + y / (a + b + n ) 
•  The posterior mean is a compromise between 

prior mean and sample mean 

•  The stronger the prior (a+b), the more weight 
the prior has in the posterior 

•  The larger the sample size, the more weight the 
likelihood has in the posterior 



Your turn! 
Binomial example with 22 presences, 7 absences: 
Consider the following priors for θ: 
Beta(1,1)   Beta(9,1)   Beta(100,100) 
 
For each of these: 
1. What is the prior mean for θ? 
2. What is the posterior distribution for θ?  
3. What is the posterior mean  for θ? 
4. What general conclusions can you make  

 about the influence of priors and sample size? 



Answers: 
 Sample proportion = 22/29 = 0.76 

 
 
Beta(1,1):   

 Prior mean = (1)/(1+1) = 0.5 
 Posterior mean = (22+1)/(29+2) = 0.74 

 
Beta(9,1): 

 Prior mean = (9)/(9+1) = 0.90 
 Posterior mean = (22+9)/(29+10) = 0.79 

 
Beta(100,100): 

 Prior mean = (100)/(100+100) = 0.5 
 Posterior mean = (22+100)/(29+200) = 0.53 



Biased coin 

•  P(Heads) = P( X = 1) p = ? 
•                        0-1 i.i.d. Bernoulli(p) trials 
•  Let          be the number of heads in n trials 
•  Likelihood is 
•  For prior use uninformative distribution on (0,1) 

•  So posterior distribution is proportional to  
   f(X|p) f(p) =  

•  f(p|X)  

X 1,…,X n

( | ) (1 )X n Xf X p p p −= −

(1 )X n Xp p −−

∝ (1 )X n Xp p −−

iX X=∑



•  Toss the coin 10 times 

•  Data: T, T, H, T, T, T, T, H, T, H 
             0, 0, 1,  0, 0, 0, 0, 1,  0, 1 

•  n=10 and x=3 

•  Posterior distribution is  
   Beta(3+1,7+1) = Beta(4,8) 



•  Posterior distribution Beta(4,8) 
•  Mean: 0.33 
•  Mode: 0.30 

•  qbeta(.025,4,8) = 0.11 
•  qbeta(.975,4,8) = 0.61 

•  [.11, .61] is the 95%  
   credible interval for p 

 
•  P(.11 < p < .61 | X) = .95 



Choice of Prior distributions 



Posterior distribution is Beta(x+a, n-x+b) ∝



Conjugate priors 
•  It might be reasonable to expect the 

posterior distribution to be of the same 
form as the prior distribution 

•  This is the principle of conjugacy 

•  For a Binomial likelihood  a Beta prior 
distribution is conjugate: a Beta posterior is 
obtained as a result of Bayes theorem 



Conjugate priors 



Strategies for prior determination 

1.  Partition Θ in sets (e.g., intervals) 
2.  Determine the probability of each set  
3.  Approach π by an histogram 

 
•  Select significant elements of Θ and evaluate their 

respective likelihood 

•  Empirical Bayes 

•  Hierarchical Bayes 



Improper prior 

•  Not a distribution 

•  Often only way to derive a prior in noninformative 
settings 

•  Performances of associated estimators usually good  

•  Often occur as limits of proper distributions 

•  Check if the posterior is still proper 



Noninformative priors 
Noninformative priors cannot be expected to 
represent exactly total ignorance about the 
problem at hand, but should rather be taken as 
reference or default priors, upon which 
everyone could fall back when the prior 
information is missing. 
 
—Kass and Wasserman, 1996— 



Jeffreys’ prior (1891–1989) 

Proportional to sqrt( | Fisher information | ) 
 
Parameterization invariant 
 
Suffers from dimensionality curse 

 
  



Dynamic Updating 
•  If we obtain more data, we do not have to redo all of the 

analysis: our posterior from the first analysis simply 
becomes our prior for this next analysis 

•  Binomial example: 
Stage 0: Prior p(θ) ~ Beta(1,1);  ie  E(θ)=0.5 
 
Stage 1: Observe y=22 ‘presences’ from 29 sites  

Likelihood: p(y|θ)~Bin(n=29,θ) 
Posterior: p(θ|y)~Beta(23,8); ie E(θ|y) = 0.74 

 
Stage 2: Observe 5 more ‘presences’ from 10 sites 

Likelihood: p(y|θ)~Bin(n=10,θ) 
Prior p(θ)~Beta(23,8) 
Posterior p(θ|y)~Beta(28,13); ie E(θ|y) = 0.68 



Example: Estimating a normal mean 
n observations Y = (y1,..,yn) from a normal distribution, 
unknown mean µ, known variance σ2 

•  Likelihood:  p(yi|θ)   yi ~ N(µ, σ 2)     
       p(Y|θ) = (2πσ2)-n/2exp(-0.5Σι(yi-θ)2/σ2)   

  

•  Prior: A conjugate prior is   θ ~ N(µ0 ,σ0
2) 

   p(θ) =  (2πσ0
2)-1/2 exp(θ-µ0)2/σ0

2)   

   µ0 ,σ0
2 can be specified values representing 

  our “best guess” at the true mean and how 
  certain we are of this.  

   Or we can put priors  on these values as well: hierarchical model 



Normal Model, known variance 

•  Posterior:  
 
  p(µ|Y) ~ N(µ1, σ1

2) 
  
	
 	
µ1 = ( µ0 / σ0

2 + n y / σ2 ) / (1/σ0
2 + 1/σ2) 

 
  1/σ1

2 = 1 / σ0
2   +  n / σ2 

 

Posterior mean is 
a weighted average 
of prior and data 

Posterior variance also  
combines variances from 
prior and data  



Your turn! 
1.  Suppose that we observe y = 2 and wish to estimate 

the population mean µ 

2.  Assume model: p(y|µ) ~ N(µ,σ2=3)  
Assume prior:      p(µ) ~ N(µ0=0 , σ0

2=1) 

3.  What is the posterior distribution for µ? 

4.  What if the prior is N(2,1)? N(0,10)? 
 
5.  Verify the equations on the previous slide 



Answers 
•  Observe y = 2 ;   p(y|µ) ~ N(µ,σ2=3)  

 
•  If prior p(µ) ~ N(µ0=0 , σ0

2=1) 
then the posterior is p(µ|y) ~ N(µ1, σ1

2) 
	
posterior mean: µ1 = ( 0/1 + 2/3) / (1/1 + 1/3) = 0.50 
 posterior variance: 1/σ1

2 = 1/1 + 1/3 + 1.333 so σ1
2 = 0.75  

 
•  If prior p(µ) ~ N(µ0=2 , σ0

2=1) 
µ1 = ( 2/1 + 2/3) / (1/1 + 1/3) = 2 
 1/σ1

2 = 1/1 + 1/3 = 1.333 so σ1
2 = 0.75 

 
•  If prior p(µ) ~ N(µ0=0 , σ0

2=10) 
µ1 = ( 0/10 + 2/3) / (1/10 + 1/3) = 1.54 
 1/σ1

2 = 1/10 + 1/3 = 0.4433 so σ1
2 = 2.31 

  



Normal model, unknown mean 
unknown variance 

  
  σ ~ Uniform(a,b)   

a b 

uniform  
probability p(σ) 



Credible Intervals and Regions 
•  The Bayesian equivalent of frequentist confidence 

intervals 

•  Highest posterior density (HPD) regions: give the 
highest probabilities of  

   containing θ for a  
given volume 
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Hypothesis testing 
•  Decide about validity of assumptions or restrictions 

on the parameter 
H0 :   θ in Θ0          H1 : θ in Θ1  

Binary decision process:  
•  accept coded by 1 
•  reject  coded by 0 
0-1 loss function 
Accept the null if  
the posterior probability of Θ0 is > 0.5 
 



Example: linear regression 
Model: y = Xβ + e ;   e ~ N(0,σ2) 
Alternative representation: 
      y ~ N(µ, σ2);   µ = Xβ	

 
OLS estimates: 
βols = (XTX)−1XTy 
σ2

ols = yTy − 2βT
olsXT y + βT

olsXTXβols / (n − p) 



Example: linear regression 
 
Likelihood:  
p(y | X, β, σ2) = (2πσ2)−n/2  exp[-Σι (yi − βTxi

T)2 / 2σ2 ]  
i.e. prop. to      exp [ (yTy − 2βTXTy + βTXTXβ ) / 2σ2 ] 
 
MVN prior for β: p(β) ~ MVN(β0, Σ0) 
Then p(β | y,X, σ2) is prop. to p(y | X, β, σ2) p(β) 
i.e. exp[βT(Σ0

-1 β0 + XTy/σ2) − 0.5βT(Σ0
-1 + XTX/σ2)β] 

i.e. posterior is MVN 
mean = (Σ0

-1 β0 + XTy/σ2 )/(Σ0
-1 + XTX/σ2) 

var =  (Σ0
-1 + XTX/σ2 ) -1  

 



Example: linear regression 
 
IG prior for σ2 or equivalently, gamma prior on precision: 1/σ2   
p (σ2) ~ IG (ν/2, δ/2) 
 
Then p(σ2 | y,X, β) is prop. to  p(y | X, β, σ2) p(σ2) 
 
i.e. IG posterior with parameters 

 ( ν + n )/2  
  
 ( δ + yTy − 2βTXTy + βTXTXβ ) / 2  



         IG mean = α / (α-1)     variance = β2/(α -1)2 (α-2) 



Example: logistic model 
Experiment: proportion of seeds that germinated on each of 21 plates 

arranged as a 2 by 2 factorial layout by seed and type of root extract 
   

ri and ni are the number of germinated and the total number of 
seeds on the ith plate, i =1,...,N 

 
Here yi = ri; θi = pi = probability of germination on the ith plate 
 

 
 

seed O. aegyptiaco 75 seed O. aegyptiaco 73
Bean Cucumber Bean Cucumber

r n r/n r n r/n r n r/n r n r/n
_________________________________________________________________
10 39 0.26 5 6 0.83 8 16 0.50 3 12 0.25
23 62 0.37 53 74 0.72 10 30 0.33 22 41 0.54
23 81 0.28 55 72 0.76 8 28 0.29 15 30 0.50
26 51 0.51 32 51 0.63 23 45 0.51 32 51 0.63
17 39 0.44 46 79 0.58 0 4 0.00 3 7 0.43

10 13 0.77
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10 13 0.77



Logistic model 
 ri  ~  Binomial(pi, ni) 
  
 logit(pi) = α0 + α1x1i + α2x2i + α12x1ix2i + bi 
  
 bi  ~ Normal(0, σ2) 

 
 α0, α1, α2, α12  ~ Normal(0 , 1.0E6) 
	
σ ~ U(0,100) 

1.0 E6 = 1000000 
1.0 E-6=0.000001 

Extra-binomial variation 



DAG for logistic model 

for(i IN 1 : N)

sigma

tau

alpha12alpha2alpha1alpha0

b[i]

n[i]

x1[i]

x2[i] p[i]

r[i]



Example: random effects linear model 

 
30 rats, weighed weekly for 5 weeks 
Model as random effects linear growth curve 

 
            Weight Yij of rat i on day xj 

 
       xj =  8  15  22  29  36 

Rat 1   151  199  246  283  320 
Rat 2   145  199  249  293  354 
… 
Rat 30   153  200  244  286  324 



Rats model 
•  Model 

 yij ~ Normal (αi +βi xj, σC
2 ) 

  
•  Priors 

αi ~ Normal ( αC , σα2 )  
βi ~ Normal ( βC , σb

2 ) 
 
αC ~ Normal ( 0 , 1E4 )    
βC ~ Normal ( 0 , 1E4 ) 
σC ~ Uniform ( 0 , 100 ) 
σα ~ Uniform ( 0 , 100 ) 
σβ ~ Uniform ( 0 , 100 ) 



DAG for rats example 

Yij 

xj µij 

αi 

σα 

 

 

 

 

 

 Days j 

σC  

 

 

 Rats i 

βi 

αC βC σβ 



End of session 1 
 

First part of session 2: MC and MCMC 
 

Second part of session 2: back to these slides 
 
 



Recall linear regression 

β | y,X, σ2 ~ MVN( (Σ0
-1 β0 + XTy/σ2)/(Σ0

-1 + XTX/σ2),  
                                (Σ0

-1 + XTX/σ2) -1 ) 
 
 
σ2 | y,X, β ~ IG( (ν + n)/2,  
                           (δ + yTy − 2βTXTy + βTXTXβ)/2 ) 



Computation: linear regression 



WinBUGS 

•  Windows version of  
‘Bayesian Analysis Using Gibbs Sampling’ 

•  Also available: OpenBUGS 

•  Can call WinBUGS from R, Matlab, etc 

•  Can program MCMC using R, Fortran, C etc 

•  See also First Bayes and other specialist programs 



Running WinBUGS 
1.  Model: Specification 

1.  Check model 
2.  Load data 
3.  Compile 
4.  Load or generate initial values for simulations 

2. Inference  
1.  Model: Update: run chain for short time (burn-in) 
2.  Inference: Samples: Monitor parameters of interest 
3.  Model: Update: run chain for longer time 

(collection) 
4.  Inference: Samples: Summary statistics, plots etc 



Example: BUGS code for seeds 
model{ 
 
  for (i in 1:N)  { 
     r[i] ~ dbin(p[i],n[i]) 
     b[i] ~ dnorm(0.0,tau) 
     logit(p[i]) = 
                 alpha0+alpha1*x1[i]+alpha2*x2[i]+alpha12*x1[i]*x2[i]+b[i] 
     } 
 
   alpha0 ~ dnorm(0 , 1.0E-6) 
   alpha1 ~ dnorm(0 , 1.0E-6) 
   alpha2 ~ dnorm(0 , 1.0E-6) 
   alpha12 ~ dnorm(0  , 1.0E-6) 
   sigma ~ dunif(0 , 100) 
   tau <- 1/(sigma*sigma) 
} 
 

Beware! WinBugs uses precisions 
1/σ2 for normal distributions! 



Example: BUGS code for rats 
model{ 

 for (i in 1:N)  { 
  for (j in 1:T) { 
   mu[i,j] <- alpha[i] + beta[i] * (x[j] - x.bar) 
   Y[i,j] ~ dnorm(mu[i,j], tau.c) 
  } 
  alpha[i] ~ dnorm(alpha.c, tau.alpha) 
  beta[i] ~ dnorm(beta.c, tau.beta) 
 } 

alpha.c ~ dnorm (0, 1.0E-4) 
beta.c ~ dnorm (0, 1.0E-4) 
tau.c <- 1/(sigma.c*sigma.c) 
sigma.c ~ dunif (0, 100) 
tau.alpha <- 1/(sigma.alpha*sigma.alpha) 
sigma.alpha ~ dunif (0, 100) 
tau.beta <- 1/(sigma.beta*sigma.beta) 
sigma.beta ~ dunif (0, 100) 
x.bar <- mean( x[] ) 
alpha0 <- alpha.c - beta.c * x.bar 
} 

N = no. rats, T = no. time periods 



 

beta[1]

iteration
295029002850

    5.0
    5.5
    6.0
    6.5
    7.0

beta[2]

iteration
295029002850

    6.0
    6.5
    7.0
    7.5
    8.0

beta[3]

iteration
295029002850

    5.5
    6.0
    6.5
    7.0
    7.5

beta[4]

iteration
295029002850

    4.5
    5.0
    5.5
    6.0
    6.5

beta[5]

iteration
295029002850

    5.5
    6.0
    6.5
    7.0
    7.5

beta[6]

iteration
295029002850

    5.0
    5.5
    6.0
    6.5
    7.0

beta[7]

iteration
295029002850

    5.0
    5.5
    6.0
    6.5
    7.0

beta[8]

iteration
295029002850

    5.5
    6.0
    6.5
    7.0
    7.5

beta[9]

iteration
295029002850

    6.0
    6.5
    7.0
    7.5
    8.0

beta[10]

iteration
295029002850

    4.5
    5.0
    5.5
    6.0
    6.5
    7.0

beta[11]

iteration
295029002850

    6.0
    6.5
    7.0
    7.5
    8.0

beta[12]

iteration
295029002850

    5.0
    5.5
    6.0
    6.5
    7.0

beta[13]

iteration
295029002850

    5.0
    5.5
    6.0
    6.5
    7.0
    7.5

beta[14]

iteration
295029002850

    5.5
    6.0
    6.5
    7.0
    7.5
    8.0

beta[15]

iteration
295029002850

    4.5
    5.0
    5.5
    6.0
    6.5

Trace plots for rats 



 

beta[1] sample: 3000

    5.0     5.5     6.0     6.5

    0.0
    0.5
    1.0
    1.5
    2.0

beta[2] sample: 3000

    6.0     6.5    7.0    7.5    8.0

    0.0
    0.5
    1.0
    1.5

beta[3] sample: 3000

    5.5     6.0     6.5     7.0

    0.0
    0.5
    1.0
    1.5
    2.0



Bayesian analysis via R 
Many packages are now available:   

http://cran.r-project.org/web/views/Bayesian.html  
 
Example: bayesm 
   runireg: Gibbs Sampler for Univariate Linear Model 

 rhierLinearModel: Gibbs Sampler for Hierarchical 
Linear Model 

 hierLinearModel: Gibbs Sampler for Hierarchical 
Linear Model 

  
Example: MCMCPack 

 MCMCLogit: MCMC for logistic regression 
  

 
 
 



Your turn:  
Linear modelling with WinBUGS 

 Read the RATS example in the Help Examples 
Vol 1 and do the following: 

–  Make sure that you understand the model. 
–  Make sure that you understand the WinBUGS code 

for the model and priors. 
–  Run this model. (ie check the model, enter the data, 

validate the model, update, monitor, update, 
summarise, etc). 

–  Write down the posterior estimates of the overall 
growth parameters. 



Your turn: More with WinBugs 
Continue with the RATS example and experiment with 

changing the code to reanalyse the data excluding 
the first 10 rats. To do this: 

1.  Open a new file in WinBugs (File New). 
2.  Copy the original data, model and initial values to 

the new file. 
3.  Delete the first 10 rats in the dataset. 
4.  Modify the Model and Initial Values files to allow 

for this change.  
5.  Run the analysis again. What difference do you see 

in the results? 



Your turn:  
using R (bayesm) for linear modelling 

•  Install and load bayesm 

•  Read the documentation for runiregGibbs 

•  Run the example given in the documentation (see next slide) 

•  Use this package to analyse the environmental health study 
data given in the previous example 

 



bayesm code for linear modelling 
# set number of iterations 
  R = 10000 
# simulate data 

 X=cbind(rep(1,n),runif(n))  
     beta=c(1,2) 
  sigsq=.25  
     y=X%*%beta+rnorm(n,sd=sqrt(sigsq)) 
# set data 
     Data1=list(y=y,X=X) 
     Mcmc1=list(R=R) 
# run analysis 
    out=runiregGibbs(Data=Data1,Mcmc=Mcmc1) 
# print output 

  cat("Summary of beta and Sigma draws",fill=TRUE)  
      summary(out$betadraw,tvalues=beta)  
      summary(out$sigmasqdraw,tvalues=sigsq)  

 plot(out$betadraw)   



For an environmental health study we want to relate  
Y = amount of ammonia escaping in an industrial plant 
X = temperature 
 

 X=c(27,27,25,24,22,23,24,24,23,18,18,17,18, 
      19,18,18,19,19,20,20) 
 

 Y = c(42, 37, 37, 28, 18, 18, 19, 20, 15, 14, 14,  
        13, 11, 12, 8, 7, 8, 8, 9, 15) 

  

Your turn: Do it yourself 



Do it yourself 
 The aim is to fit a simple regression  

y=a+bx 
 to the data on the previous slide 

 
•  Open a new file in WinBUGS 
•  Write a simple regression model in WinBUGS code  
•  Type the data in your file, in a form that WinBUGS will 

read 
•  Type some initial values in your file, in a form that 

WinBUGS will read. OR let WinBUGS generate the 
initial values 

•  Run the model in WinBUGS 



Possible code for regression 
model{ 

    for( i in 1 : N ) { 
     Y[i] ~ dnorm(mu[i],tau) 
  mu[i] <- alpha + beta * x[i] 
    } 
    beta ~ dnorm(0.0, 1.0E-6) 
    alpha ~ dnorm(0.0,1.0E-6) 
    sigma1 ~ dunif(0,100) 
    tau <- (1/sigma*sigma) 
        } 
     

Data 
list( N=20, 

x=c(27,27,25,24,22,23,24,24,23,18,18,17,18,19,18,18,19,19,20,20), 
    Y=c(42, 37, 37, 28, 18, 18, 19, 20, 15, 14, 14, 13, 11, 12, 8, 7, 8, 8, 9, 15) 
     ) 
 



Recap 
1.  What is the difference between a likelihood, a 

prior, a posterior and an initial value? 

2.  What is a conjugate prior? Give an example 

3.  Describe the general concept of MCMC 

4.  How do you obtain a 95% credible interval for a 
parameter using MCMC? 



What about convergence? 

•  As with all simulation methods, we need to 
make sure that: 
–  the simulations have converged to the right 

distributions 
–  the whole distribution is being explored in the 

simulation 
– we have run the simulations long enough to 

obtain adequate estimates  



How do we do this? 
•  Theoretical results  
•  Diagnostics: 

– Can you detect ‘burn-in’? 
– Do multiple chains show dependence on initial 

values? 
– Do the (time series) trace plots show that the chain is 

‘stable’ around a mean value? 
– Are the posterior density plots smooth and well 

behaved? 
– Are the common diagnostic tests passed?  



Theoretical Results 
 

 

supx∈C|Pn(x,C)-P∞(C)|≤Mρn
C 

 
 

 ∫P(x,dy)V(y) ≤(1-β)V(x)+IC(x) 



Visual assessment of multiple chains  
alpha chains 1:2

iteration
1 500 1000 1500 2000

    0.0

    0.2

    0.4

    0.6

    0.8

x.change chains 1:2

iteration
1 500 1000 1500 2000

   -0.5

    0.0

    0.5

    1.0



Convergence: Geweke (1992) 
•  Look at a single long run 
•  Test for equal mean for  
   “early” part (1st quarter) and  
   “late” part   (2nd     half) of the chain 
•  Test statistic is Z~N(0,1) if the sample is all from 

the same distribution. 

•  (This is only a test of “non-convergence”) 



Convergence: Gelman & Rubin (1992) 
•  Many long runs from different starting points 
•  Convergence assessed via an ANOVA  
    between and within the chains 
•  Monitor convergence by R: a conservative estimate of how 

much extra information about the variable that we could expect to 
gain by running the chains indefinitely 

 R tends to 1 as n tends to infinity 
 R is subject to sampling variation so monitor  
 R and its upper 97.5% confidence limit 

•  Works best when posterior is approx. normal  
(may need to transform some variables, eg probs, variances) 



Convergence: Raftery & Lewis (1992) 

•  Look at a single long run 
•  Reduce to two-state Markov chain and use this theory 

•  Diagnostic estimates: 
 n0 = length of burnin 
 N =  additional iterations needed to estimate a             
         posterior quantile adequately 

•  Can give quite different estimates depending on starting 
values and required accuracy of estimation 



Convergence: Heidelberger & Welch (1983) 
•  Look at a single long run 

•  Hypothesis test based on Brownian bridge theory and 
spectral density estimation 

•  Iterative procedure: 
 - test H0: entire sample of values for a given variable  
    form a stationary process 
 - if H0 rejected, discard first 10% and repeat test 
 - continue discarding until H0 accepted or 50%  
    samples are discarded (need to run chain for longer) 

•  Test has very low power to detect lack of convergence for 
small sample size. 



Convergence assessment in 
WinBUGS 

•  Trace plots 

•  Autocorrelation 

•  BGR diagnostic 



BGR diagnostic in WinBUGS 
•  Brooks-Gelman-Rubin convergence statistic 
•  Compare variation between & within multiple chains 
•  The width of the central 80% interval of the pooled runs is 

green, the average width of the 80% intervals within the 
individual runs is blue, and their ratio R (= pooled / within) 
is red 

•  Want convergence of R to 1 

•  Want convergence of both the pooled and within interval 
widths to stability 



Model evaluation 
posterior predictive checks 

•  Compare observed statistics with values 
predicted under the model 

•  Compare observed data with replicated data 
 - if the model is adequate, replicated data generated under the 
model should look similar to the observed data 



Model Comparison 

•  Bayes factors, posterior odds, BIC, DIC 
 

•  Reversible jump MCMC  
Birth and death MCMC 

•  Model averaging 



Bayes factors 
•  Consider models M1 and M2 (not nec. nested) 

•  Choose a model based on its posterior probability 
given the data. This is proportional to the prior 
probability of the model multiplied by the 
likelihood of the model given the data.  

•  So we consider: 

 p(M2|y) / P(M1|y) =  
{p(M2) / p(M1)} × {p(y|M2) / P(y|M1)}  

 



Bayes factors 
 p(M2|y) / P(M1|y) =  
{p(M2) / p(M1)} × {p(y|M2) / P(y|M1)}  

•  The second term (the ratio of marginal likelihoods) is 
termed the Bayes factor B21 and is similar to a likelihood 
ratio, but p(y|M) is integrated over the parameters instead of 
maximised:  

•   
eg, p(y|M1) = ∫ p(y|M1,θ1) p(θ1) dθ1 
 

•  2log(B21) gives same scale as usual deviance and LR 
statistics. 

 



Guidelines for Bayes Factors 
(arbitrary!) 

 B21  2log(B21)    Interpretation 
 <1   Negative    Support for M1 
 1 to 3  0 to 2    Weak support for M2 
 3-20  2-6     Support for M2 
 20-150  6-10     Strong evidence for M2 
>150  >10     Very strong support for M2 



Bayesian Information Criterion 
BIC 

•  Approximate the Bayes factor 
•  Assume the prior for θ given a model is 

multivariate normal and that the prior is 
equivalent to a single extra observation  

•  p is the number of parameters 
•  n is the number of observations 

  BIC = log P(y|θ*,M) – (p/2) log n  
 

 Can rewrite as BIC = n log(1-R2) + k log(n) 
 



Discussion of BIC 
•  BIC penalises models which improve fit at the 

expense of more parameters (encourages 
parsimony)  

•  A problem is that the true dimensionality (number 
of parameters p) of the model is often not known, 
and also that the number of parameters may 
increase with sample size n. 

•  Can approximate using the effective number of 
parameters (Speigelhalter et al, 1999) 

•  Alternatives are DIC (deviance information 
criterion, calculated in WinBUGS), conditional 
posterior predictive probabilities, etc. 



Model Averaging 
•  Instead of choosing a single model, a common 

practice is model averaging 
•  This is the practice of combining expected 

values obtained from different models (perhaps 
describing different combinations of variables) 
weighted by their corresponding posterior 
probabilities 

•  Adoption of this approach depends on the aim of 
the analysis and the trade-off between improved 
estimation and ease of interpretation 



Your turn: using R (bayesm) for 
linear modelling 

•  Install and load bayesm 
•  Read the documentation for runiregGibbs 
•  Run the example given in the documentation (see 

also next slide) 
•  Use this package to analyse the environmental 

health study data given in the previous example.  
 



bayesm code for linear modelling 
# set number of iterations 
  R = 10000 
# simulate data 

 X=cbind(rep(1,n),runif(n))  
    beta=c(1,2) 
  sigsq=.25 y=X%*%beta+rnorm(n,sd=sqrt(sigsq)) 
# set data 
     Data1=list(y=y,X=X) 
     Mcmc1=list(R=R) 
# run analysis 
    out=runiregGibbs(Data=Data1,Mcmc=Mcmc1) 
# print output 

  cat("Summary of beta and Sigma draws",fill=TRUE) summary(out
$betadraw,tvalues=beta) summary(out$sigmasqdraw,tvalues=sigsq)  
 plot(out$betadraw)   



code for env. health model 
 library(bayesm) 
 R = 10000 

# read data from a .csv file, with columns Amm, Int, Temp;  Int col = 1’s 
#     wd<-"c://Work/Work13/courses/MISG2013" 
#  setwd(wd) 
#  seeds <- read.csv(“seeds.csv") 
#  attach(seeds) 
# alternative: directly enter Amm , Int and Temp in R: 
     Amm<- c(42,37,37,28,18,18,19,20,15,14,14,13,11,12,8,7,8,8,9,15) 
     Temp<- c(27,27,25,24,22,23,24,24,23,18,18,17,18,19,18,18,19,19,20,20 ) 
     Int <- rep(1,20)  

 X=cbind(Int, Temp)  
 Data1=list(y=Amm,X=X) 

     Mcmc1=list(R=R) 
  out=runiregGibbs(Data=Data1,Mcmc=Mcmc1) 

  



code for env. health model (cont) 
 
  cat("Summary of beta and Sigma draws",fill=TRUE) 
  summary(out$betadraw) 
  summary(out$sigmasqdraw)  
  plot(out$betadraw)   
  b0 <-  mean(out$betadraw[,1]) 
  b1 <-  mean(out$betadraw[,2]) 
  plot(Temp, Amm) 
  lines(Temp, b0 + b1*Temp) 
  plot(Amm, Amm, type= ″l″)  # note, if you copy this into R, change the “ 
  points(Amm, b0+b1*Temp) 
 

•  What could you do to improve the fit of this 
model? (Hint: consider a transformation.) 

 



Your turn: using R (MCMCPack) 
for linear regression 

•  Install and load MCMCPack 
•  Browse: 

http://mcmcpack.wustl.edu/files/
MartinQuinnMCMCpackslides.pdf 

•  Read the documentation for MCMCregress 
•  Run the example given in the MCMCregress 

documentation (see also next slide) 
•  Use this package to analyse the environmental 

health example. 
 



code for example regression 
 

 library(MCMCPack) 
 
     line <- list(X = c(-2,-1,0,1,2), Y = c(1,3,3,3,5))  
     line 
     posterior <- MCMCregress(Y~X, data=line, verbose=FALSE)  
     posterior <- MCMCregress(Y~X, data=line, verbose=TRUE) 
     plot(posterior)  
     raftery.diag(posterior)  
     summary(posterior)  



code for env. health model 
 
     Amm<- c(42,37,37,28,18,18,19,20,15,14,14,13,11,12,8,7,8,8,9,15) 
     Temp<- c(27,27,25,24,22,23,24,24,23,18,18,17,18,19,18,18,19,19,20,20 ) 
     Data1=list(y=Amm,X=Temp) 
     posterior <- MCMCregress(y~X, data=Data1, verbose=FALSE)  
     plot(posterior)  
     raftery.diag(posterior)  
     summary(posterior)  



Your turn: using R (MCMCPack) 
for linear logistic regression 

•  Read the documentation for MCMClogit 
•  Run the example given in the MCMClogit 

documentation (see also next slide) 
  How would you use this package to analyse 

the seeds example? 
 



MCMCPack example:  
logistic regression 

library(MCMCPack) 
data(birthwt)  
?MCMClogit 
?birthwt 
summary(birthwt) 
names(birthwt) 
posterior <- MCMClogit(low~age+as.factor(race)+smoke, 

data=birthwt) plot(posterior)  
summary(posterior)  



More modelling in R using bayesm 

•  Bivariate normal Gibbs sampler: 
  In your own time, read the documentation for 

rbiNormGibbs  and run the example.  

•  Hierarchical linear model: 
  In your own time, read the documentation for 

rhierLinearModel  and run the example. 
  Would this be applicable to the Rats example? 

If so, how? 



•  Using WinBUGS, run the Seeds example with and 
without the interaction term.  
– What is the difference in goodness of fit of the 

models as measured by the DIC? (A smaller DIC 
indicates a better fit.) 

Your turn: model assessment and 
comparison in WinBugs 

Run some iterations. Choose the DIC option from the ‘Inference’ 
menu and set DIC. Run some more iterations. Return to the DIC box. 
Use the ‘Total DIC’. 



•  Read the documentation for the package BayesFactor 
in MCMCPack 

•  Using R, run the environmental health example with 
the following models and compute the BF for each: 
i.  y ~ X 
ii.  log(y) ~ X 
iii.  y ~ X + X 

•  Based on the Bayes Factor, what model would you 
choose for these data? 

Your turn: model assessment and 
comparison in R 



Code for BF in the env. health example 
Amm<- c(42,37,37,28,18,18,19,20,15,14,14,13,11,12,8,7,8,8,9,15) 
Temp<- c(27,27,25,24,22,23,24,24,23,18,18,17,18,19,18,18,19,19,20,20 ) 
 
post1 <- MCMCregress(Amm~Temp, b0=1, B0=1e-6, 
       marginal.likelihood="Chib95")  
post2 <- MCMCregress(log(Amm)~Temp, b0=0, B0=1e-6,  
       marginal.likelihood="Chib95")  
Temp2 <- Temp**2 
post3 <- MCMCregress(Amm~Temp+Temp2, b0=1,  B0=1e-6, 
        marginal.likelihood="Chib95")       
 
raftery.diag(post1); raftery.diag(post2); rafter.diag(post3)  
 
summary(post1) ; summary(post2); summary(post3) 
BayesFactor(post1, post2, post3) 
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