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Introduction:

MC MC methods are sophisticated and

general algorithms for simulation from

complex probability models,

high dimensional,

highly non-Gaussian,

highly non-linear and

possibly multimodal

Given the simulated path of the Markov chain

we can compute Monte Carlo expectations for

any quantities of interest by averages along the

sample path
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• Metropolis algorithm (1953)

• Hastings algorithm (1970)
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SIMULATION:

“step by step the probabilities of separate events

are merged into a composite picture which gives

an approximate but workable answer to the

problem”

MONTE CARLO:

cripted name of a secret project of John von

Neumann and Stanislas Ulam at the Los Alamos

Scientific Laboratory. The project used ran-

dom numbers to simulate complicated sequences

of connected events

(roulette: natural random number generator)

The Monte Carlo Method,

D.D. McCracken, Scientific American, 1955
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HISTORICAL INTRODUCTION

World War II

Los Alamos Scientific Laboratory

J. von Neumann, S. Ulam, E. Fermi

Random neutron diffusion in fissile material

QUESTION: what is the distance covered

by a neutron shot trough different materials?

ANSWERS:

Theoretical computation: too complicated

Empirical experiment: too risky

Simulation: approximate but feasible!

They knew, for a single neutron

average distance with constant velocity

collision probability with an atomic nucleus

probability of absorption/repulsion
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In physics:

single neutron ⇒ huge number of neutrons

single event ⇒ complicated chain of events

In finance:

single agent ⇒ huge number of actors

single buy/sell action ⇒ many connected events

“The impact of Monte Carlo and Markov Chain

Monte Carlo methods on applied statistics has

been truly revolutionary” W.S. Kendall

Economics, ecology, climate models,

epidemilogy, genetics, ...: similar analogy
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Approximation of the value π

1 mt.R =

(2 R)
2

πR
2 π

4TOTAL N. TOSSES

N. TOSSES INSIDE CIRCLE

~~

6 successes in 10 tosses ⇒ π̂ = 2.4

89 successes in 100 tosses ⇒ π̂ = 3.57

750 successes in 1000 tosses ⇒ π̂ = 3

accuracy increases with the square of the num-

ber of tosses:

to duplicate accuracy we have to

quadruplicate the number of experiments
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Use of random numbers

generate two random numbers (i.i.d.) between

[0, 1, · · · ,36] the pair defines a point on the

Cartesian plane
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Solution of complicated integrals

As a matter of fact we are

estimating/approximating an integral
∫

(x,y)∈ �
f(x, y) π(x, y) dx dy

where

f(x, y) =

{
1 if x2 + y2 < 1
0 otherwise

π(x, y) = uniform distribution on the unit square

The Monte Carlo (MC) estimator of µ is :

µ̂ =
1

n

n∑

i=1

f(Xi, Yi)

where (Xi, Yi) ∼ π, i = 1, · · · , n; i.i.d.

Under regularity conditions the LLN + CLT

ensure that the MC estimator is asymptotically

unbiased and has asymptotic variance

V(µ̂; f, π) =
1

n
σ2π(f)
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PROBLEM 1

Increase dimensions

square → cube → ℜd

circle → sphere → S ⊂ ℜd

as other numerical methods that rely on

n-point evaluations we have absolute error of

estimators that decreases as n−1/d

instead of n−1/2

curse of dimensionality
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PROBLEM 2

1 mt square → 10 km square

uniform π → complicated distribution
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Often π is so complicated that we are not able

to generate i.i.d. samples from it and therefore

we cannot perform Monte Carlo integration

We can construct a Markov chain that

“converges” to π

We then simulate a path of the chain

X0, X1, X2, · · ·

And we use the Xi “as if” they were

i.i.d. from π

This is known as Markov chain Monte Carlo

(MCMC) simulation
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Examples of applications

• Model estimation and selection:

GARCH, SV, GLM, Hidden Markov models

• finance: option pricing

• state space models:

epidemiology and meteorology

• biology - physics - chemistry - genetics

• mixture models for cluster analysis:

astronomy, population studies

• operational research

traffic control, quality control,

production optimization

In general Bayesian models
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NOTATION of BAYESIAN INFERENCE

d = data (fixed)

x = parameters (variable)

Pr(d|x) = likelihood = L

Pr(x) = prior = p

Pr(x|d) = posterior = π
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MOTIVATION

integration plays a fundamental role both in

classical and Bayesian statistics:

π ∝ L× p

normalizing constant for the posterior dist.:

∫
L× p

marginalization of a joint distribution:

∫
π(x1, x2)dx1

synthesis of a complicated distribution:

∫
f(x)π(x)dx
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• DETERMINISTIC APPROXIMATIONS

– Laplace approximation

– Riemann approximation

• STOCHASTIC APPROXIMATIONS

– Monte Carlo

– Markov chain Monte Carlo



MONTE CARLO SIMULATION

In general suppose we want to evaluate

µ =
∫

f(x)π(dx) = Eπf

• f(x) = x  mean of π

• f(x) = x2  second moment of π

• f(x) = 1[A]  probability of A under π

If we cannot compute the integral analytically

but we have X1, · · · , Xn i.i.d. observations from

π we can estimate µ by

µ̂n =
1

n

n∑

i=1

f(Xi)

We can use:

• the Strong Law of Large Numbers and

• the Central Limit Theorem

(if Eπf2 < ∞)
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We thus have (w.p.1):

µ̂n → µ

i.e. the estimator is asymptotically unbiased.

The variance of the MC estimator is:

σ2(µ̂n) =
1

n
σ2π(f)

and can be estimated by:

σ̂2(µ̂n) =
1

n

1

n− 1

n∑

i=1

[f(Xi)− µ̂n]
2

so that, asymptotically, we have a CLT:

µ̂n − µ

σ̂
∼ N (0,1)

How can we generalize this idea when we do

not have i.i.d. observations from π?

=⇒ IMPORTANCE SAMPLING

=⇒ MCMC
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IMPORTANCE SAMPLING

If we cannot get iid samples from π

use an auxiliary (importance) distribution, g

that we can sample, and use this alternative

representation of µ:

µ =
∫

f(x)π(x)dx =
∫

f(x)
π(x)

g(x)
g(x)dx

we can thus estimate µ by:

µ̂2 =
1

n

n∑

i=1

f(Xi)
π(Xi)

g(Xi)

For any choice of g, as long as

supp(π) ⊂ supp(g)

again SLLN + CLT hold

(under same regularity conditions as before)

18



PROS

• choose g easy to sample from

• same samples from g can be used

repeatedly for different π and different f

CONTRAS

• finite variance only if

Eπ[f
2π(x)

g(x)
] < ∞

• if g has tails lighter than π, i.e.

supπ/g = ∞ not good: weights vary widely

giving too much importance to few Xi

• need supπ/g < ∞ but if this is the case

could use accept-reject to simulate from π
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EXAMPLE: Student-T distribution

X ∼ T (ν, θ, σ)

π(x) ∝

(
1+

(x− θ)2

νσ2

)−(ν+1)/2

w.l.o.g. take θ = 0 and σ = 1

f(x) =

(
sin(x)

x

)5
1(x>2.1)

so that

µ =

∫ ∞

2.1

(
sin(x)

x

)5
π(x)dx
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Different possibilities

• sample directly from Student-T since:

T(ν,0,1) =
N (0,1)√

χ2
ν/ν

• importance sampling from g = N (0,1)

non-optimal

• importance sampling from g = Cauchy(0,1)

OK: bounded tails

Exercise: write the code to sample from T(ν,3,1)
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MARKOV CHAINS

A M.C. is a random process that evolves in

time X1, X2, . . . with the property that

FUTURE indep. PAST | PRESENT

We will assume that the time is discrete and

the state space is finite, S = {1,2, . . . , k}

A M.C. is specified by giving

• initial distribution: λ (a vector)

λ(i) = P(X1 = i), i ∈ S

• transition probabilities: P (a matrix)

P(i, j) = P(Xt+1 = j|Xt = i), i, j ∈ S, ∀t
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• We assume the transition probabilities do

not change with time: homogeneous

• Notice that

∑

j∈S

Pij = 1

since the chain must be in some state in

the next step

• We have

a vector: λ = initial distribution

a matrix: P = transition probabilities

and can hardly resist the temptation of

multiplying them · · ·

23



λP(j) =
∑

i
λ(i)P(i, j)

=
∑

i
P(X1 = i)P(X2 = j|X1 = i)

=
∑

i
P(X1 = i,X2 = j)

= P(X2 = j)

X1 ∼ λ
P

−→ X2 ∼ λ
P

−→ . . .
P

−→ Xn ∼ λ

π is a stationary distribution for P if

πP = π

that is, if

∑

i

π(i)P(i, j) = π(j), j ∈ S

i.e. π is the (normalized) left eigenvector of

P with eigenvalue 1

24



Imagine moving around the grid as a

“random-king” on a chess board

Maybe a 2 mt (10 mt?) grid is coarse enough?

bigger steps → faster exploration

It depends on how variable/stable are

π = target

f = function

in
∫
f(x)π(dx)
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Determine the stationary distribution of a king

free to move on the chess board

What is the probability of finding the king in

the top right corner?

What is the probability of finding the king in

the center of the chess board?
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P is reversible w.r.t. π if

π(i)P(i, j) = π(j)P(j, i), i, j ∈ S

(detailed balance condition)

i. e. the M. C. looks the same running

forward or backward

P

(i, j)

(i, j)
(i)

P

(j)π π

Prove that: Reversibility → Stationarity

27



EXAMPLE: Irreducible but not reversible chain

P =



1/3 1/3 1/3
1 0 0
0 1 0




We represent the transition matrix of a MC as

a GRAPH with a vertex for each state

a directed edge from vertex i to j if there is

a nonzero transition probability from i to j

a nonzero Pij entry in the transition matrix
1 2 3

This is a possible sequence

1 → 3 → 2 → 1

this is an impossible sequence

1 → 2 → 3 → 1

since P23 = 0 (an edge is missing from 2 to 3)



There is a sequence of states for which it is

possible to tell in which direction the

simulation has occurred and thus

the chain is not reversible



n-step transition matrix:

Pn(i, j) = P(Xm+n = j|Xm = i)

If π is stationary for P then (prove):

πPn = π

The distribution of Xn is independent on n if

and only if the initial distribution is a stationary

distribution (prove).

Suppose a stationary distribution π exists and

that:

lim
n→∞

1

n

n∑

k=i

P(Xk = j|X0 = i) = π(j), ∀i ∈ S,

i.e. regardless of the initial starting value of

the chain i, the long run proportion of time the

chain spends in state j equals π(j), for every

possible state j. Then π is called the limiting

distribution and the MC is said to be ergodic
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• Not all MC have a stationary dist.

• A MC can have more than 1 stationary dist.

• Not all stat. dist. are also limiting dist.

All Markov chain used for MCMC purposes

need to have a unique stationary and limiting

distribution

A state i is said to be accessible from state j

if, for some n ≥ 0, Pn(i, j) > 0.

Two states i and j each accessible from the

other are said to communicate

Irreducibility

if all state communicate with each other

if you can go from anywhere to everywhere
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EXAMPLE

S = {1,2,3,4} = state space

P =




0.4 0.6 0 0
0.2 0.8 0 0
0 0 0.4 0.6
0 0 0.2 0.8




we have::

two (equivalence) classes of communicating states

two left eigenvectors of P with eigenvalue 1:

σ = (1/4,3/4,0,0)

ρ = (0,0,1/4,3/4)

depending on the initial state we get a different

stationary distribution
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A M.C is PERIODIC if there are parts of the

state space that the chain can visit only at

regular time intervals

A M.C. is APERIODIC if it is not periodic

If the diagonal elements of the transition

matrix are all zero the chain may be periodic

Periodic MC are not ergodic but the diffi-

culty can be eliminated by sub-sampling
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If a (finite state space) M.C. is IRREDUCIBLE

it has a unique stationary distribution π

If the M.C. is also APERIODIC

• π is also the limiting distribution:

P(Xn ∈ A|X0) → π(A)

• Law of Large Numbers holds

if Eπ|f | < ∞:

1

n

n∑

i=1

f(Xi) −→ Eπf a.s.

• Central Limit Theorem holds

if Eπf2 < ∞ + uniform ergodicity

or if

Eπ|f |2+δ < ∞ + geometric ergodicity

or if

Eπf2 < ∞ + geometric ergodicity + rev.
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EXAMPLES

S = {1,2,3,4} = state space

π = [14,
1
4,

1
4,

1
4] = distribution of interest

Possible transition matrices:

P =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0




periodic - irreducible - non reversible

Q =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




periodic - reducible - reversible
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EXAMPLES (cont.)

S = {1,2,3,4} = state space

π = [14,
1
4,

1
4,

1
4] = distribution of interest

Possible transition matrices:

R =




1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4




aperiodic - irreducible - reversible

S =




1/2 1/2 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1/2 1/2




aperiodic - irreducible - reversible
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MARKOV CHAIN MONTE CARLO

We are interested in estimating

µ = Eπf(X)

Construct a Markov chain that has π as its

unique stationary distribution : π = πP

Simulate the Markov chain: X0, X1, X2 . . . ∼ P
Estimate µ with

µ̂n =
1

n

n∑

i=1

f(Xi)

How good is the estimate?

V(f ,P) = lim
n→∞

nVarπ[µ̂n]

= σ2
∞∑

k=−∞

ρk

where

σ2 =Varπ f(X)

ρk =
Covπ[f(X0), f(Xk)]

σ2

35



DIFFERENT PROSPECTIVE

In Markov chain theory we are given a MC,

P and we find its equilibrium distribution

In MCMC theory we are given distribution,

π and we construct a MC reversible wrt it

A MC can be specified by

• its macroscopic transition matrix

• its microscopic dynamics
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GENERAL STRATEGY for MCMC

Current position Xt = x

(1) propose a candidate y ∼ q(x, ·)

(2) with probability α(x, y) accept y: Xt+1 = y

(3) otherwise stay where you are: Xt+1 = x

the acceptance probability α(x, y) is computed

so that REVERSIBILITY wrt π is preserved:
∫

(x,y)∈A×B
π(dx)q(x, dy)α(x, y) =

∫

(x,y)∈A×B
π(dy)q(y, dx)α(y, x)

X Y
α

(x, y)α

(y, x)
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A LITTLE BIT OF HISTORY

Metropolis et al. (1953)

if the proposal is symmetric, q(x, y) = q(y, x):

α(x, y) = 1 ∧
π(y)

π(x)

Hastings (1970)

generic proposal in a fixed-dimension problem:

α(x, y) = 1 ∧
π(y)

π(x)

q(y, x)

q(x, y)
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Since the generation and the acceptance steps

are independent, the resulting macroscopic

dynamic i.e. the transition matrix (kernel),

Pxy = P(Xn+1 = y|Xn = x)

= q(x, y)α(x, y), ∀x 6= y

and Px,x can be found from the requirement

that
∑

y Pxy = 1

The resulting Metropolis-Hastings MC is re-

versible wrt π. If it is also irreducible and ape-

riodic we have an ergodic Markov chain with

unique stationary and limiting distribution π

If q(x, y) is not the transition matrix of an irre-

ducible MC on S then P(x, y) is not irreducible.

However, irreducibility of q is not sufficient to

guarantee irreducibility of P since it also de-

pends on α
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SPECIAL CASES

I.I.D. SAMPLING (Monte Carlo simulation)

if q(x, y) = π(y)
then α(x, y) = 1

INDEPENDENCE M-H

the proposal distribution does not depend on

current position of the M.C.: q(x, ·) = N(0, σ2)

RANDOM WALK M-H

the proposal distribution does depend on the

current position of the M.C.: q(x, ·) = N(x, σ2)

that is: use the proposal

Yt = x+ εt,

where εt ∼ N(0, σ2), independent of Xt.

The instrumental density is now of the form

q(y − x) and the Markov chain is a random

walk if we take q to be symmetric
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GIBBS SAMPLER

if x = (x1, · · · , xd) ∼ π update one component

at a time by using the conditional distribution

of that component given everything else as the

proposal

q(xi, ·) = π(xi|x−i) = full conditionals

where “ −i ” indicates {j : j 6= i}.

PRO

• the acceptance probability is always one

• no need to calibrate the proposal

CONTRAS

• full conditionals can be hard to sample from

• if high correlation on the target it takes a

long time to move around the state space
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RND-WALK Metropolis algorithm

Target distribution: π(x) ∼ N(0,1)

Proposal distribution: q(x, y) ∼ N(x, σ2)

(symmetric) for some σ2: typically hard to

properly calibrate the spread of the proposal!

Acceptance probability :

α(x, y) = min
[
1, π(y)q(y,x)

π(x)q(x,y)

]

= min
[
1, exp

(
−1

2(y
2 − x2)

)]

Tuning of the proposal is crucial!
– optimal tuning

– adaptive MCMC

(Roberts, Rosenthal and Atchadé)
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Program in ”R”:

met.has = function(n,x0,sigma){

x = array(0,n)

x[1] = x0

for(t in 2:n)

{

y = rnorm(1,x[t-1],sigma)

accept = exp((x[t-1]^2 - y^2)/2)

alpha = min(1,accept)

u = runif(1)

if (u <= alpha) x[t] = y

else x[t] = x[t-1]

}

plot(1:length(x),x,

type="l",lty=1,xlab="t",ylab="x")

x

}
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Easy example: Gibbs sampler

Consider a single observation y = (y1, y2) from

a bivariate normal population with

unknown mean θ = (θ1, θ2) and

known covariance matrix

Σ =

[
1 ρ
ρ 1

]

With a uniform prior on θ,

the posterior distribution is

[
θ1
θ2

]
|y ∼ N(

[
y1
y2

]
,

[
1 ρ
ρ 1

]
)
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The full conditional distributions are

θ1|θ2, y ∼ N(y1 + ρ(θ2 − y2), 1− ρ2)

θ2|θ1, y ∼ N(y2 + ρ(θ1 − y1), 1− ρ2)

Suppose (y1, y2) = (0,0) and ρ = 0.8

Initialize the Markov chain at

(θ1 = −2, θ2,= −2)

Start the simulation:




θ1 θ2
−2 −2

−1.902945 −2.20308
−1.891287 −1.69893

...... ......
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1-dim sample path and histogram of θ1 and θ2
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2-dim sample path and ”histogram” of (θ1, θ2)
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More difficult Gibbs sampler

Y1, ..., Yd iid N(µ, σ2 = τ−1)

Priors:

µ ∼ N(µ∗, σ2∗) τ = 1/σ2 ∼ G(α∗, β∗)

Posterior:

p(µ, τ |y1, ..., yd) ∝ L(µ, τ ;y)p(µ, τ)

∝ τ
d
2+α∗−1e−β∗τe

−
τSd
2 −(µ−µ∗)2

2σ2∗

where Sd =
∑d

i=1(yi − µ)2

Full conditionals:

(µ|τ, y1, ..., yd) ∼ N
(
dȳτ+µ∗τ∗
dτ+τ∗

, (dτ + τ∗)−1
)

where τ∗ = (σ2∗)
−1

(τ |µ, y1, ..., yd) ∼ G
(
α∗ +

d
2, β∗ +

Sd
2

)
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Start the chain at some values µ(0) and τ(0)

and repeat the following algorithm

(1) Given τ(t),

generate µ(t+1) from π(µ|τ(t), y1, ..., yd)

(2) Given µ(t+ 1)

generate τ(t+1) from π(τ |µ(t+1), y1, ..., yd)

This iterative procedure generates a M.C. on

the space (µ, τ) that has the distribution of

interest as its unique stationary (and limiting)

distribution
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gibbs1 = function(nits,y,mu0=0,tau0=1){

alphas = 0.1

betas = 0.01

mus = 0.0

taus = 1.0

x = array(0,c(nits+1,2))

x[1,1] = mu0

x[1,2] = tau0

n = length(y)

ybar = mean(y)

for(t in 2:(nits+1)){

x[t,1]=rnorm(1,(n*ybar*x[t-1,2]+mus*taus)/

(n*x[t-1,2]+taus),

sqrt(1/(n*x[t-1,2]+taus)))

sn=sum((y-x[t,1])^2)

x[t,2]=rgamma(1,alphas+n/2)

/(betas+sn/2)}

x

}
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Note: in general α(x, y) depends on π via

the ratio π(y)
π(x)

so we can compute α(x, y) even

if we only know π up to a normalizing constant

To avoid working with very small numbers:

use the fact that X = exp(logX) so that:

π(y)

π(x)
= exp(logπ(y)− logπ(x))

Calibration of the proposal

pilot runs - trial and error

aim at acceptance probability ≈ 30%

magic number 0.234 (under regularity condi-

tions for the target and in infinite dimensions)
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Sub-sampling: for memory convenience and

to reduce (correlation) variance of MCMC es-

timators

Updating schemes:

• we can update one variable at a time

• we can update groups of variables together

• we can randomly select which variable to

update: random scan

• we can update the variables always in the

same order: systematic scan



HYBRID ALGORITHMS

we can combine all the above recipes via

MIXTURES or CYCLES:

MIXTURES:

with prob. pi at each step select a move type

or a proposal (
∑

i pi = 1)

CYCLES:

each move type or proposal is used in a

predetermined sequence

Example: Metropolis within Gibbs

Is like having different keys (proposals) to move

around a building visiting all (possibly locked)

rooms
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Length of the Burn-in

• look if the sample path is “sufficiently”

stable

• start more chains and wait until they get

“sufficiently” close

• convergence diagnostic Brooks + Gelman

“General methods for monitoring conver-

gence of iterative simulations”

J. Comp. Graph. Stat., 1998, p. 69 - 100

• CODA and BOA: free software

for convergence diagnostics
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Determining the length of the burn-in is one

of the major problems with MCMC

You can never be sure that the chain has run

sufficiently long to have forgotten its starting

point and have thus reached stationarity

This problem is solved by the

Perfect Simulation idea



X0 = STARTING POINT OF THE M.C.?

LLN + CLT hold for π-almost all x0 i.e. for

all starting points but a set of π measure zero

To get rid of this set of zero measure we want

our chains to be φ-Harris recurrent

i.e. we need the existence of a distribution φ

s.t. for all A with φ(A) > 0 we have

P(Xt ∈ A i.o.|X0 = x) = 1 for all x

If such a φ exists the chain is also

π-Harris recurrent
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X0 = STARTING POINT OF THE M.C.?

• choose something you like (!)

• sample from the prior distribution

(if you are in a Bayesian setting)

• find the modes of π and use a mixture of

T-distributions centered at the modes

(the modes can be found via pilot runs of

the M.C.)

• start from “unlikely” points to check that

your algorithm is effective
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n = HOW MANY SIMULATIONS?

• single long run
 you get closer to the stationary dist.
 reduce the variance of your estimator

• many short runs
 you explore the state space better
 reduce the bias of your estimator

TRADE OFF

How long is long?

Need n ≫ τf = integrated autocorrelation time

V (f, P) = σ2f (1+2
∞∑

k=1

Covπ[f(X0), f(Xk)]

σ2f
) = σ2f τf

so τf is the number of correlated samples with
the same variance-reduction power as one
independent sample
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EXAMPLE

Mixture of two normal distributions with well

separated means giving two distinct modes:

π(x) = 0.5N (−a, σ2) + 0.5N (a, σ2)

use a Metropolis-Hastings algorithm with

symmetric uniform proposal

q(x, y) = U [x− d, x+ d]

w.l.o.g. take σ2 = 1 so that the acceptance

probability is

α(x, y) = 1∧
exp(−(y + a)2/2) + exp(−(y − a)2/2)

exp(−(x+ a)2/2) + exp(−(x− a)2/2)
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Program in ”R”:

mixture = function(n,x0,a,d){

x = array(0,n)

x[1] = x0

for(t in 2:n)

{

y = runif(1,x[t-1]-d,x[t-1]+d)

accept = (exp(-1*(y+a)^2/2) +

exp(-1*(y-a)^2/2))/

(exp(-1*(x[t-1]+a)^2/2) +

exp(-1*(x[t-1]-a)^2/2))

alpha = min(1,accept)

u = runif(1)

if (u <= alpha) x[t] = y

else x[t] = x[t-1]

}

plot(1:length(x),x,

type="l",lty=1,xlab="t",ylab="x")

x

}
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Target distribution with modes in 4 and -4

and standard-deviation =1

−5 0 5

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

x

ta
rg
e
t 
=
 m
ix
tu
re
 o
f 
n
o
rm
a
ls

60



Sample path of a chain started in 3 with

d = 1 (proposal), n= 1000 steps:

the chain only visits the first mode

(values taken range from 2 to 6)

0 200 400 600 800 1000
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3

4
5

6

t

x
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ACF of the Markov chain: the autocorrelation

becomes negligible only at lag 15
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Sample path of a chain started in 3 with

d = 4 (proposal), n=1000 steps:

the chain visits both modes

(values taken range from -6 to 6)
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ACF of the Markov chain: the autocorrelation

is still very high at lag 30
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Sample path of a chain started in 3 with

d = 8 (proposal), n= 1000 steps:

The Markov chain moves more freely between

the two modes
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ACF of the Markov chain: the autocorrelation

becomes negligible only at lag 20

There is still space for improvement
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ERROR in MCMC ESTIMATES

Parameter:

µ =

∫
f(x)π(dx) = Eπf

Estimator:

µ̂n =
1

n

n∑

i=1

f(Xi)

Variance of the estimator:

V (f, P) = lim
n→∞

nVarπ[µ̂n]

=
∞∑

k=−∞

Covπ[f(X0), f(Xk)]

=
∞∑

k=−∞

γk
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Estimate the variance of MCMC estimators

• Empirical covariances: V̂ =
∑+∞

−∞ γ̂k
it is well known that this is not a consistent

estimator.

Use a truncated version of the above over a

proper window: V̂ =
∑+M

−M γ̂k with M being

the smallest integer ≥ 3 τ̂ (Sokal, 1989)

• Blocking: divide the simulations into b

consecutive blocks of length k

gk,i =
1

k

ik∑

j=(i−1)k+1

f(xj) = mean of block i

V̂ =
1

b(b− 1)

b∑

i=1

[gk,i − µ̂]2
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• Use regeneration times

to improve the blocking estimator of the vari-

ance by taking blocks to be independent tours

• Use multiple runs

compute your statistics on multiple

independent runs of your MC

(with different starting points)

and look at the distribution of your statistics

(and its variance)
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CONVERGENCE RATE

We know the chain converges to π but how

fast?

Very rarely we can get numeric bounds for con-

vergence rates

A MC is GEOMETRICALLY ERGODIC

if there exist M(x) < ∞ and ρ < 1 s.t.

||Pn(xn, ·)− π(·)|| ≤ M(x0)ρ
n

A MC is UNIFORMLY ERGODIC if, for every x0

||Pn(xn, ·)− π(·)|| ≤ Mρn
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The constant ρ is the rate of convergence and

coincides with the spectral radius = supk |λk|

Uniform ergodicity ⇒ geometric ergodicity

Example of the kind of theorems you can get

relative to the convergence rate of MCMC:

The independence Metropolis-Hastings algo-

rithm (i.e. when the proposal does not depend

on the current position of the MC: q(x, y) =

q(y)) is uniformly ergodic if and only if

π(x)
q(x)

is bounded
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MORE “HISTORY”

Green (1995)
specifying proposals indirectly
allowing varying dimensions:

α(x, y) = 1 ∧
π(y)

π(x)

g(u′)

g(u)

∣∣∣∣∣
∂(y, u′)

∂(x, u)

∣∣∣∣∣

Tierney and Mira (1999)
delaying rejection:

α(x, y, z) = 1∧
π(z)

π(x)

q1(z, y)

q1(x, y)

[1− α(z, y)]q2(z, y, x)

[1− α(x, y)]q2(x, y, z)

Green and Mira (2001)
delaying rejection specifying proposals
indirectly and allowing varying dimensions:

α(x, y, z) = 1 ∧ { π(z)
π(x)

g1(ũ1)
g1(u1)

[1−α(z,y⋆)]
[1−α(x,y)]

g2(ũ2)
g2(u2)

∣∣∣∣
∂(z,ũ1,ũ2)
∂(x,u1,u2)

∣∣∣∣ }

69



REVERSIBLE JUMP ALGORITHM

(Green, Biometrika ’95)

“if the number of things you don’t know is one

of the things you don’t know ...”

EXAMPLES of APPLICATIONS:

• mixture models with unknown

number of components

• change points models with unknown

number of changes

• variable selection with unknown

number of variables
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Bayesian Model Choice

Typical in model choice settings

- model construction (nonparametrics)

- model checking (goodness of fit)

- model improvement (expansion)

- model prunning (contraction)

- model comparison

- hypothesis testing (Science)

- prediction (finance)
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REVERSIBLE JUMP ALGORITHM

current state x ∈ Rd

generate m random variables: u ∼ g(·)

propose y = h(x, u) ∈ Rd ′

current state y ∈ Rd ′

generate m′ random variables: u′ ∼ g(·)

propose x = h′(y, u′) ∈ Rd

dimension matching

d+m = d′ +m′

YX

u’

+ md

+

u

m’ d’
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Example of RJ:

Han and Carlin, JASA 2001, ex. 3.1

Non nested linear regression

Data = 42 specimens of radiata pine

Y = maximum compressive strength parallel

to the grain

X = the density

Z = the resin-adjusted density
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Model 1: y1 = α+ β(xi − x) + ǫi
ǫi ∼ N(0, σ2), i = 1, · · ·n

θ1 = (α, β, σ2)

Priors:

(α, β) ∼ N(3000,185), Diag(106,104)

σ2 ∼ IG(3, (2 ∗ 3002)−1)

Model 2: y1 = γ + δ(zi − z) + ηi
ηi ∼ N(0, τ2), i = 1, · · ·n

θ2 = (γ, δ, τ2)

Priors:

(γ, δ) ∼ N(3000, 185), Diag(106,104)

η2 ∼ IG(3, (2 ∗ 3002)−1)

i.e. both have prior mean and standard devia-

tion equal to 3002

These priors are roughly centered on the corre-

sponding least squares solutions, but they are

rather vague



We assume prior independence among all the

parameters given the corresponding model in-

dicators

The full conditional distributions of the model

specific parameters are also bivariate normal

and inverse gamma

Prior model probabilities:

p1 = 0.9995 and p2 = 0.0005

use log-transformation for variances:

λ = log σ2

ω = log τ2



Model-switching probabilities = 0.5

When a move bwn models is proposed set

(α, β, λ) = (γ, δ, ω)

(and viceversa)

the dimension-matching requirement is auto-

matically satisfied without generating an addi-

tional random vector and the Jacobian = 1

α12 = 1 ∧ L(y|γ,δ,ω,M=2)p2
L(y|α,β,λ,M=1)p1

α21 = 1 ∧ L(y|α,β,λ,M=1)p1
L(y|γ,δ,ω,M=2)p2



when a move within model is proposed use a

MH with

(α, β, λ) ∼ N(current values, Diag(500,250,1))

accept w.p.

α11 = 1 ∧ prior Lhd(proposed)
prior Lhd (current)

similarly for α22

note: symmetric proposal cancels

Alternative: use gibbs steps

(no need to log-transform)

Exercice: Try example 4.1 of Han and Carlin

(JASA)

hierarchical longitudinal model



QUESTION

If P and Q have stationary distribution π, which

one is “better”?

What does “better” mean in this context?

SELECTION CRITERIA

• speed of convergence to stationarity

• asymptotic variance of MCMC estimates,

V (f, P)
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CONFLICTING BEHAVIORS

• {λ0P ≥ λ1P ≥ . . .}= ordered eigenvalues

• {e0P , e1P , . . .} = corresponding eigenvectors

ASYMPTOTIC VARIANCE:

V (f, P) =
∑

j

1 + λjP

1− λjP
kj σ

2
π(f)

with kj ≥ 0 and
∑

j kj = 1

SPEED of CONVERGENCE:

Pn(x, y) =
∑

j

ejP (x)ejP (y) λnjP

with e0P (·) = π and λ0P = 1
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CONFLICTING BEHAVIORS

small variance in CLT ⇐⇒ small eigenvalues

fast convergence ⇐⇒ small |eigenvalues|

-1 +10

σ

    GOOD

(P)EIGENVALUES  OF  P =

BAD
BAD

           VERY GOOD
    BAD

  GOOD
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ORDERING based on

EFFICIENCY of ESTIMATES

Given two Markov chains P and Q with the

same stationary distribution π

RELATIVE EFFICIENCY

P is more efficient than Q relative to f ,

P �E,f Q , if V (f, P) ≤ V (f, Q)

ABSOLUTE EFFICIENCY

P is uniformly more efficient than Q,

P �f Q , if V (f, P) ≤ V (f,Q), ∀f ∈ L2(π)
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PESKUN ORDERING

Peskun (1973), Tierney (1995)

P dominates Q off-diagonally, P �P Q , iff

• finite state spaces

P(x, y) ≥ Q(x, y) x 6= y

• general state spaces

P(x,B) ≥ Q(x,B) x /∈ B

Intuition: when Xt+1 = Xt we fail to explore

the state space and increase the covariance

along the sample path of the chain

THEOREM

If P and Q are reversible w.r.t. π then

P �P Q

⇓

P �E Q

78



IMPROVING THE M-H-G ALGORITHM

Peskun says that whenever Xt+1 = Xt

MCMC estimates become less efficient

In the M-H-G algorithm this happens

every time a candidate is rejected

Thus we can beat M-H-G in the Peskun sense

by diminishing the rejection frequency

Delaying Rejection �E Metropolis-Hastings
in Metropolis-Hastings Algorithm

Delaying Rejection �E Reversible Jump
in Reversible Jump Algorithm

Whether delaying rejection is useful in practice

depends on whether the reduction in variance

compensates the additional computational cost
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DELAYING REJECTION IN

METROPOLIS-HASTINGS

ALGORITHMS

Current position Xt = x

(1) propose a candidate move y ∼ q1(x, ·)

(2) with probability α(x, y) let Xt+1 = y

(3) if y is rejected propose a new candidate

move z ∼ q2(x, y, ·)

(4) with probability α(x, y, z) let Xt+1 = z

(5) keep proposing candidates until acceptance

(5’) interrupt the delaying process and set Xt+1 = x

The acceptance probabilities are computed

so that reversibility w.r.t. π is preserved

separately at each stage
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• First stage acceptance probability:

α(x, y) = 1 ∧ π(y)
π(x)

q1(y,x)
q1(x,y)

same as in std Metropolis-Hastings

• Second stage acceptance probability:

α(x, y, z) = 1 ∧ π(z)
π(x)

q1(z,y)
q1(x,y)

[1−α(z,y)]
[1−α(x,y)]

q2(z,y,x)
q2(x,y,z)

α (x, y, z)

(x, y)α

X Y

Z



ADJUSTING THE PROPOSAL DIST.

One possible reason for rejection in M-H-G

algorithms is that the proposal is locally badly

calibrated to the target

With the delaying strategy you have freedom

to use intuition in designing the way proposals

at later stages “learn” from previous mistakes

Validity is ensured by

• using the correct acceptance probability

• matching dimensions

(in a Rev. Jump setting)
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ADJUSTING THE PROPOSAL DIST.

• independence + rnd walk proposals: the

rnd walk gives protection against the po-

tentially poor behavior of an independence

chain with bad proposal distribution

• trust region based proposals: start with

a local quadratic approximation of log (π)

and gradually reduce the region supporting

the proposal

• griddy proposals: select a point from the

previously rejected ones with probability ∝

π(yj) and add to the point a random incre-

ment

83



BAYESIAN CREDIT SCORING

estimate the default probability of companies

that apply to banks for loan

DIFFICULTIES

• default events are rare events

• analysis ts may have strong prior opinions

• observations are exchangeable within sec-

tors

• different sectors might present

similar behaviors relative to risk
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THE DATA

7520 companies

1.6 % of which defaulted

7 macro-sectors (identified by experts)

4 performance indicators (derived by experts

from balance sheet)

Dimension % Default

Sector 1 63 0%

Sector 2 638 1.41%

Sector 3 1343 1.49%

Sector 4 1164 1.63%

Sector 5 1526 1.51%

Sector 6 315 9.52%

Sector 7 2471 0.93%
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THE MODEL

Bayesian hierarchical logistic regression model

Notation:

• nj: number of companies belonging to

sector j, j = 1, · · · ,7

• y(ij): binary response of company i

i = 1, · · · , nj in sector j. y = 1 ⇔ default

• x(ij): 4×1 vector of covariates (performance

indicators) for company i in sector j

• α : 7× 1 vector of intercepts

one for each sector

• β : 4× 1 vector of slopes

one for each performance indicator

PARAMETERS of INTEREST: α and β
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PRIORS:

αj|µα, σα ∼ N1(µα, σ
2
α) ∀j

µα ∼ N1(0,64)

σ2α ∼ IG(25/9,5/9)

β ∼ N4(0,64× I4)

POSTERIOR:

π(α, β, µα, σα|y, x) ∝
∏

j

∏

i

θ
y(ij)
ij (1− θij)

1−y(ij)

∏

j

p(αj|µα, σα) p(µα)p(σα) p(β)

where

θij =
exp[αj + x′(ij)β]

1 + exp[αj + x′(ij)β]
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TUNING of the PROPOSALS

Joint updates of all, or groups, of variables

result in very low acceptance probabilities

and thus slowly mixing sampler

thus we update each one of 13 parameters

of interest separately in a fixed scan

D.R.: σ1 as in table below, σ2 = σ1
2

M.H.: σ = σ1+σ2
2

α1 1.2

α2, · · · , α7, µα, b2 0.4

σα 3

b1, b4 0.15

b3 0.3
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PARAMETER ESTIMATES:

a comparison

par. MH Estimates MH Cred. Int.

α1 -5.87 ( 0.11) -7.63; -4.36

α2 -5.15 ( 0.05) -5.99; -4.60

α3 -4.94 ( 0.03) -5.66; -4.50

α4 -4.72 ( 0.05) -5.45; -4.32

α5 -5.03 ( 0.04) -5.70; -4.64

α6 -3.75 ( 0.04) -4.45; -3.33

α7 -6.08 ( 0.07) -6.93; -5.64

β1 -0.09 ( 0.01) -0.19; 0.031

β2 -1.16 ( 0.04) -1.83; -0.74

β3 -1.30 ( 0.04) -1.70; -1.02

β4 0.06 ( 0.001) -0.05; 0.15

µc -5.06 ( 0.07 ) -6.04; -4.35

σ2c -5.06 ( 0.07 ) -6.04; -4.35
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PARAMETER ESTIMATES:

a comparison

par. DR Estimates DR Cred. Int.

α1 -5.95 ( 0.05 ) -7.67; -4.48

α2 -5.2 ( 0.02 ) -5.97; -4.67

α3 -4.98 ( 0.02 ) -5.55; -4.60

α4 -4.77 ( 0.01 ) -5.39; -4.36

α5 -5.08 ( 0.02 ) -5.66; -4.68

α6 -3.79 ( 0.02) -4.41; -3.36

α7 -6.14 ( 0.03 ) -6.79; -5.75

β1 -0.1 ( 0.002 ) -0.19; 0.008

β2 -1.19 ( 0.02 ) -1.76; -0.74

β3 -1.32 ( 0.02 ) -1.67; -1.09

β4 0.07 ( 0.002) -0.023; 0.14

µc -5.13 ( 0.02) -6.07; -4.40

σ2c -5.13 ( 0.02) -6.07; -4.40
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PERFORMANCE COMPARISON: MH VS DR

based on the asymptotic variance of the result-

ing MCMC estimates obtained by averaging

along the chain sample path

MCMC estimate:

µ̂n =
1

n

n∑

i=1

f(Xi)

Asymptotic variance:

V (f, P) = σ2
∞∑

k=−∞

ρk = lim
n→∞

nVarP [µ̂n]

⇓

τ = integrated autocor. time

⇓

τ̂ = Sokal’s adaptive truncated
correlogram estimate
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With σ2α = 1 and empirical Bayes approach

τ̂ β1 β2 β3 β4 µα
MH 6.5 22.9 21.1 5.7 17.2

DR 4.1 18.9 12.7 3.9 11.6

τ̂ α1 α2 α3 α4 α5 α6 α7

MH 9.8 15.3 20.0 18.7 20.7 23.7 25.6

DR 6.7 10.8 9.4 14.9 12.5 17.1 14.7

With Gamma prior on σ2α and diffuse priors

centered at zero

τ̂ β1 β2 β3 β4 µα σα
MH 10.0 64.5 23.4 5.6 15.9 20.2

DR 7.2 38.1 20.9 4.2 14.6 15.6

τ̂ α1 α2 α3 α4 α5 α6 α7

MH 26.9 50.1 43.2 50.3 54.6 60.6 60.2

DR 17.0 18.4 28.1 28.4 30.1 32.3 35.1

Values obtained averaging over 5 simulations

of length 1024 after a burn-in of 150 steps
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AUTOCORRELATION FCT for α3

Metropolis-Hastings sampler
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Delaying rejection sampler
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RESULTS

Estimates of DP:

• company 30 in sector 6

• company 20 in sector 2

DP = θi,j =
exp(αj + x′(ij)β)

1 + exp(αj + x′(ij)β)

plug in α̂j and β̂ 1
N

∑1174
n=150 θni,j MLE

θ̂30,6 0.431 0.434 0.372

θ̂20,2 0.032 0.034 0.026
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Posterior kernel density estimate of DP

• company 30 in sector 6

• company 20 in sector 2
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Comparison of Bayesian vs MLE

in terms of prediction

Cross Validation Analysis:

70 % of the obs used to estimate the model

30 % of the obs used to validate the model

(test and training samples are “balanced”: same

proportion of default in different sectors)

Root mean squared error of classification:
√√√√1

n

n∑

i=1

(yi − θ̂i)
2

where yi = 0,1 and θ̂i = estimated def. prob.

MLE Bayesian

all 0.1282 0.1003
not defaulted 0.0280 0.0137

defaulted 0.8646 0.6531
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CONCLUSIONS

• can incorporate experts prior opinions

• sectors with low or no default events

borrow information from other sectors

• having the joint posterior of all DP

can compute risk of a portfolio of loans
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EXTENSIONS

• allow different slopes for different sectors

• select the sectors based on default

probabilities via partition models

• include economic cycle indicators

among the covariates

• include time in the analysis:

dynamic MCMC, particle filters
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CONCLUSIONS on Delaying Rejection

the Delaying Rejection strategy improves

Metropolis-Hastings-Green algorithms

modulo extra computational and

programming effort
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RECENT DEVELOPMENTS

Langevin diffusions:

if you have information on the gradient of the

log target use it to construct better proposals:

q(θ, θ′) =

1

(2πσ)d/2
exp

{
−||θ′ − θ − σ2∇ logπ(x)/2||2

2σ2

}

Adaptive MCMC:

• use sampled path to calibrate the proposal

• loose the Markovian property

• need to prove ergodicity from first principles

EXAMPLE: DR+AM

AM uses a Gaussian proposal with covariance

matrix calibrated via sample path of the MC

Cov(X0, . . . , Xk) =
1

k




k∑

i=0

XiX
T
i − (k +1)Xk X

T
k
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AM = global adaptive strategy

DR = local adaptive strategy

AM → protects from under calibration of q

DR → protects from over calibration of q

Particle filters:

for target distributions that evolve over time

as in target tracking, patients monitoring or

financial applications



General advices:

• when using improper priors check that your

posterior is integrable otherwise your MC be-

comes transient eventually but you might not

realize this if you do not run your MC long

enought

• when possible try to integrate out what you

can, do not run your MC blindly

• to compute acceptance probabilities work on

the log scale

• debugging: take spacial cases where you know

the unswer and you only need to change the

code a little to get to that special case



RESEARCH CONTRIBUTIONS

(Theory)

Ordering MCMC:

• Peskun ordering based on

absolute efficiency of estimators

• Covariance ordering based on

relative efficiency of estimators

Ways of improving MCMC algorithms:

• Slice Sampler VS independence M-H

• Delayed rejection algorithm VS M-H-G

• Adaptive algorithms VS Static algorithms
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Financial/Economical applications

• Estimate of default probabilities

Mira and Tenconi, Stoch. Analysis,

Random Fields and Appl. IV, 2004

• Latent class models for credit-scoring

Scaccia, Mira, Bartolucci, ISI Proc., 2003

• Detection of structural change points

Mira and Green, Biometrika, 2001

• Stability of factor models of interest rates

Audrino, Barone-Adesi, Mira, J.Fin.Ec.2005
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Available software for MCMC:

• R routines to run MCMC and to detect

convergence

– BOA

– CODA

– MCMCpack

– mcmc

– MCMCglmm

– mcclust

– AMCMC

• WinBugs
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