
THE K-FACTOR GARMA PROCESS WITH INFINITE VARIANCE
INNOVATIONS

Mor Ndongo 1 & Abdou Kâ Diongue 2
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Abstract. In this article, we develop the theory of k-factors Gegenbauer Autoregressive Moving
Average (GARMA) process with infinite variance innovations. We establish conditions for existence
and invertibility of the model. We also discuss the parameter estimation by using two methods. The
first one is the Conditional Sum of Squares (CSS) approach and the second is the Markov Chains
Monte Carlo (MCMC) Whittle method. For comparison purpose, Monte Carlo simulations are used
to evaluate the finite sample performance of these estimation techniques.
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1 Introduction

When dealing with empirical time series arising from diverse fields of applications, we are confronted
with the phenomenon of long memory or long-range dependence. A time series with this property has
a slow and hyperbolically declining autocorrelation function or, equivalently an infinite spectrum at
zero frequency. A popular way to analyze a long memory time series is to use fractionally integrated
autoregressive moving average (FARIMA) processes introduced by Granger and Joyeux (1980) and
Hosking (1981). They assume in their theory that the innovations are gaussian. However, we realize
that this hypothesis is too restrictive, particularly, in some domains such as finance or telecommuni-
cation in which one must take into account a high variability of the data which is translated by infinite
variance. To achieve this gaol, Kokoszka and Taqqu (1994) have introduced the FARIMA processes
with infinite variance innovations helping to take into account the behavior of long memory and in-
finite variance. Furthermore, most of time series in real life may have a persistent periodic behavior,
in addition to long term structure. Unfortunately, the FARIMA model does not allow to take into
account a periodic or cyclical behavior. Thus, the methodology for modeling time series with long
memory behavior has been extended to long memory time series with seasonal components. Re-
cent contributions related to the seasonal FARIMA model (hereafter denoted ARFISMA model) are
Porter-Hudak (1990), Hassler (1994), Arteche and Robinson (2000) and Reisen et al (2004). In recent
years, Diongue et al (2008) have developed the theory of ARFISMA model with stable innovations
which allow to take the presence of long memory, seasonality and infinite variance. It is worthwhile to
note that the seasonal models mentioned above represent a special case of the stable ARFISMA mod-
els. However, these models are very limited, insofar as they consider that the seasonal frequencies are
fixed and known. In fact, most of time series in real life, exhibit long-memory periodical bihavior at
any frequency of the spectrum. See for examples Gray et al (1989), Woodward et al (1998), Giraitis
and Leipus (1995) and Chung (1996) for environmental data and Ferrara and Guégan (1999) for real
data of traffic in the subway of Paris. Thus, we developed in this paper the theory of k-factor Gegen-
bauer Autoregressive Moving-Average (GARMA) processes with stable innovations which allow the
modeling of long memory data containing seasonal periodicities and infinite variance components.
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2 The model

2.1 Stable distributions

In this section, we summarize the relevant facts associated with the stable distributions and refer the
reader to Samorodnitsky and Taqqu (1994) for a detailed statistical description. There are several
ways of defining the stable distributions. In general, it will be convenient to define them in terms
of their characteristic functions. A random variable X is said α-stable, denoted Sα,β (µ,σ), if its
characteristic function is given by

ΦX (t) =


exp
{

iµt−σα |t|α
[
1− iβ sign(t) tan πα

2

]}
if α 6= 1,

exp
{

iµt−σ |t|
[
1+ iβ 2

π
sign(t) ln |t|

]}
if α = 1,

Notice that the parameter α (0 < α ≤ 2) is called the index of stability or characteristic exponent, the
true value β (−1≤ β ≤ 1) is a measure of departure from symmetry, while the parameters σ > 0 and
µ (−∞ < µ <+∞) are the scale parameter and the location parameter respectively.

In the following of this paper, we will consider the symmetric α-stable distribution that we denote
SαS.

2.2 The k-factor GARMA(p, d, ν , q)-SαS process

We introduce here the model we will work with. Assume that (Zt)t∈Z is a sequence of independently
and identically distributed (i.i.d.) SαS (0 < α ≤ 2) random variables with mean zero and scale pa-
rameter equal to 1. Let Φ(B) = 1−∑

p
j=1 φ jB j and Θ(B) = 1+∑

q
j=1 θ jB j denote the ARMA operators

and have no common roots. Assume that all the roots of the polynomials Φ(B) and Θ(B) lie outside
the unit circle.

We define a centered k-factor GARMA process (Xt)t∈Z with SαS innovations by

Φ(B)
k

∏
j=1

(I−2ν jB+B2)d jXt = Θ(B)Zt (1)

where k is a non negative integer, |νi| ≤ 1 for i = 1, . . . ,k and d j 6= 0 ( j = 1, . . . ,k) are (fractional)
differencing degrees. The frequencies λ j = arccos(ν j) for all j = 1, . . . ,k are called the Gegenbauer
frequencies (or G-frequencies). We recall that the Gegenbauer polynomials, often used in applied
mathematics because of their orthogonality and recursion properties, are defined by:(

1−2νz+ z2)−d
= ∑

j≥0
C j (d,ν)z j, (2)

where |z| ≤ 1 and |ν | ≤ 1. A more easy way to compute the Gegenbauer polynomials
(
C j (d,ν)

)
j≥0

is based on the following recursion formula:
C0 (d,ν) = 1
C1 (d,ν) = 2dν

C j (d,ν) = 2ν

(
d−1

j +1
)

C j−1 (d,ν)−
(

2d−1
j +1

)
C j−2 (d,ν) , ∀ j > 1.

(3)

In the following theorem, we establish the invertibility and stationarity conditions of model (1).
Theorem 1: Let di 6= 0 for i = 1, . . . ,k. The k-factor GARMA(p, d, ν , q)-SαS process (Xt)t∈Z
defined by equation (1) have the following properties:
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i) The process (Xt)t∈Z is stationary if

di <


1− 1

α
if |νi|< 1

1
2

(
1− 1

α

)
if |νi|= 1

(4)

ii) The process (Xt)t∈Z is invertible if

di >


−1+ 1

α
if |νi|< 1

−1
2

(
1− 1

α

)
if |νi|= 1,

(5)

iii) The power transfer function of (Xt)t∈Z is given by:

fX (ω) =
|Θ
(
e−iω) |2

|Φ(e−iω) |2
k

∏
j=1

∣∣∣∣4sin
(

ω +λ j

2

)
sin
(

ω−λ j

2

)∣∣∣∣−2d j

, −π ≤ ω ≤ π. (6)

Under conditions (4) and (5), the AR(∞) and MA(∞) representations are respectively:

Zt =
∞

∑
j=0

α j (d,ν ,φ ,θ)Xt− j Xt =
∞

∑
j=0

β j (d,ν ,φ ,θ)Zt− j,

where d = (d1, . . . ,dk), ν = (ν1, . . . ,νk), φ = (φ1, . . . ,φp) and θ = (θ1, . . . ,θq). The coefficients
β j (d,ν ,φ ,θ) and α j (d,ν ,φ ,θ) can be determined by:

Φ(z)
∞

∑
j=0

β j (d,ν ,φ ,θ)z j = Θ(z)
∞

∑
j=0

ψ j (d, ν)z j (7)

Θ(z)
∞

∑
j=0

α j (d,ν ,φ ,θ)z j = Φ(z)
∞

∑
j=0

π j (d, ν)z j (8)

where the weights ψ j (d,ν) and π j (d,ν) are given by:

ψ j (d,ν) = ∑
0≤l1,··· ,lk≤ j,
l1+···+lk= j

Cl1 (d1,ν1) · · ·Clk (dk,νk) and π j (d,ν) = ψ j (−d,ν) , (9)

and the weights (Cli (d,ν))li∈Z are the Gegenbauer polynomials previously defined.

3 Estimation methods

In this Section, we are interested in the estimation of the parameters of a k-factor
GARMA(p, d, ν , q)-SαS process by using the Markov Chains Monte Carlo (MCMC) Whittle
method (e.g. Ndongo et al (2010)) and the Conditional Sum of Squares (CSS) procedure. Let
X1, . . . ,XT be an observed finite sequence generated by a symmetric α-stable causal stationary in-
vertible k-factor GARMA process (X)t∈Z defined by equation (1). Assume that all the Gegenbauer
frequencies are known and denote by ψ = (φ , θ , d) the vector of parameters of interest, where
φ = (φ1, . . . ,φp) and θ = (θ1, . . . ,θq) are the coefficients of the autoregressive polynomial Φ(z) and
the moving average polynomial Θ(z) respectively, d is the k-vector (d1, . . . ,dk). We assume that
ψ0 = (φ0, θ0, d0) is the true value of ψ and that ψ0 is in the interior of the compact set Ψ⊆ Rp+q+k.
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3.1 The MCMC Whittle method

In the particular case of the ARFISMA-SαS model, Ndongo et al (2010) have developed the MCMC
Wittle procedure to estimate the parameters. It is based on approximation of the Whittle likelihood
function using the MCMC method. Here, we will consider this approach to estimate the parameters
of k-factor GARMA(p, d, ν , q)-SαS process.
The MCMC Whittle’s estimator ψ̂W of ψ0 = (φ0, θ0, d0) is obtained by minimizing the following
likelihood function:

LW (X , ψ) =
1
N

N

∑
j=1

1
fX(ω j,ψ)

,

where N is taken large enough from the strong law of large number and fX(ω,ψ) is the power transfer
function of the process (Xt)t∈Z generating the data. The sequence ω1, . . . ,ωN is generated using a
Metropolis-Hastings algorithm.

3.2 The CSS method

Chung and Baillie (1993) proposed a method based on the minimization of conditional sum of squared
residuals. As remarked by Chung (1996a), it is important to note that the normality assumption is not
essential in the CSS estimation. Here, we generalize this estimator to k-factor GARMA -SαS models.
Thus, the conditional sum of squares estimator ψ̂CSS of ψ0 is the value of ψ which minimizes

S (ψ) =
T

∑
t=1

[Zt (ψ)]2 .

However, given the observation X1, . . . ,XT the innovation (Zt)t=1,...,T cannot be directly computed,
since an infinite sample would be needed. Nevertheless, they may be estimated by:

Zt (ψ) =
T−1

∑
j=0

α j(ψ)Xt− j, t = 1, . . . ,T,

where the coefficients
(
α j(ψ)

)
j≥0 are defined by equation (8).

4 Monte Carlo simulations

In this section, we focus our attention to Gegenbauer processes with SαS innovations, which are
GARMA processes without the autoregressive and moving-average parts. Thus, it is a special case
k = 1 and q = p = 0 of model (1). In addition, if α = 2 then we obtain the Gaussian Gegenbauer
processes introduced by Gray et al (1989). We propose in this section to estimate the long memory
parameter of Gegenbauer processes with SαS innovations, using the CSS method and compared it
with the MCMC Whittle method. Thus, in this experiment we consider a SαS Gegenbauer process
with d = 0.3, ν = 0.8 and α = 1.2 and we consider three sample sizes T = 250, T = 500 and T =
1000. The simulation results give the average values, the root mean square error (RMSE) and the
mean absolute error (MAE) of the estimation procedures based on 1500 replications. The results are
summarized in Table 1. It can be seen from this table that all methods have good performance (small
bias and RMSE), even for small sample size. It seems that better estimates are obtained from the
CSS method than the MCMC Whittle procedure. The simulation results also show the impact of the
sample size T on these estimation methods (when T increases, the results improves).
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Table 1: Monte Carlo study to compare CSS method with MCMC-Whittle method for SαS Gegen-
bauer process with d = 0.3, ν = 0.8 and α = 1.5.

T = 250 T = 500 T = 1000

Statistics d̂CSS d̂W d̂CSS d̂W d̂CSS d̂W

Mean 0.3103 0.3089 0.3085 0.3080 0.3067 0.3068
RMSE 0.0264 0.0278 0.0216 0.0235 0.0170 0.0190
MAE 0.0223 0.0236 0.0176 0.0192 0.0131 0.0154
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