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Introduction

Analysis of the subsurface geology in order to
identify and optimise the production of oil and
gas deposits relies on the interpretation of seis-
mic images. The seismic images in the depth’s
domain are the result of an inversion tool which is
called depth migration. Depth migration converts
wave field recorded in ’time domain” in “depth
domain”. This conversion requests an accu-
rate knowledge of vertical and horizontal seismic
velocity variations. So-called Common-Image-
Gathers (CIGs) serve as a tool to verify correct-
ness of velocity models. CIG compute in the sur-
face offset (distance between source and receiver)
domain using correct velocity model should show
flat event for main reflectors. The curvature of
events (Residual MoveOut) present on this CIG is
due to the ratio of velocity use for the migration
to medium velocity. The main goal of Residual
MoveOut analysis is to estimate this ratio which
represents the curvature of event for the veloc-
ity model updating. Conventional Residual Move
Out analysis is based on the scan of events present
in the CIG panel. A criterion called semblance is
used to pick a curvature which match the most
with the event. A stochastic version of this anal-

ysis by the mean of Bayesian modelling is dis-
cussed in this work. It provides a quantification of
the uncertainty which is not currently considered,
and which could help in the decisions that will
have important social and commercial implica-
tions. With the Bayesian setting, prior knowledge
about the Residual MoveOut curvature is com-
bined with the information contained in the mi-
grated data in the surface offset domain. The prior
knowledge about the curvature is specified by a
probability density function where the prior belief
and the corresponding uncertainty are defined.
The relationship between the curvature parame-
ter and the migrated data in surface offset data is
described by the likelihood model. The posterior
distribution provides both the most probable cur-
vature and information about the corresponding
uncertainty. Since analytical expression for the
posterior distribution can not found in our case,
Markov Chain Monte Carlo simulation is used
to explore it. Data and conventional method of
Residual MoveOut analysis is briefly presented in
the following section and then the Bayesian ap-
proach is presented and illustrated by an example
on synthetic and real data.
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Data presentation

The Residual Move Out analysis is performed on
offset domain Common Image Gathers which are
subsets of the whole image with fixed surface lo-
cation and function of offset data. Variations be-

tween the partial images at the fixed image point
are the principal elements of the Residual Move-
Out analysis (See figure (1) and(2)).
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Figure 1: (a) Image at zero-offset (b) Image at offset 2500m of synthetic data . Vertical line represents the surface position at 5425m

For example, in this synthetic data, at the sur-
face position fixed at 5425m, we notice that the
summit of the dome represented by the black
point on the image (a) and (b) of Figure (1)
changes in depth. In other words, if we fix a point
of coordinates (x,z) of the image where x is the
surface location and z the depth, the correspond-
ing amplitude a(x,z) is not the same on the two
images of figure (1). Now if we decide to fol-
low the evolution of the depth z of the summit of
the dome according to the offset 4, we notice that
this one has a hyperbolic geometry (figure(2)).
This hyperbolic geometry is given by the follow-
= \/Z(z) + (y2 — 1)h? where zg

) i oy
is the depth observe on zero-offset image,y = ¢

with v the velocity used for the migration and ¢
the media velocity and 4 the half-offset . [3] and

ing equation: z(h)

[1] show how to obtain this equation. In the fol-
lowing section we shall show how this equation is
exploited to implement the conventional Residual
Moveout Analysis.
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Figure 2: Offset Domain Common Image Gather at surface position
5425m. The line in red represents the depth’s evolution accord-
ing the offset.

Conventional Residual MoveQut Analysis

At fixed zg, the residual moveout curve is com-
)4

pletely determined by the parameter ¥ = ~. The

c
conventional residual moveout analysis algorithm

define for each depth z( a set of values of y and
so a set of residual moveout curve. A coherence
along each residual moveout curve is computed




by the mean of the semblance[6] which is widely
used in the seismic world for the detection of co-

herent events in the data . The definition of sem-

blance S(ip, y) is

where iy is the index which represents zg and
M is the number of traces contributing to the co-
herence analysis. The value of w(j,y) describes
the sample of the discrete depth on the trace in-
dexed by j which depends on 7y value. A depth
window of width W is centered about iy where
the semblance is computed. The index i repre-
sents the sample position in the depth window.
All amplitudes a;(;,) ; within W enter into the
semblance analysis, where q,(;,) ; 1s calculated
by a linear interpolation between the amplitude
values associated the two samples next to w(j,y).
The sums in the denominator in equation (1) de-
scribe the energy in the subset of prestack data

Bayesian approach

For this part, we keep the same definition as the
previous part for the various indexes.

The conventional method of the residual
moveout analysis supposes implicitly that the am-
plitudes are uniformly distributed along the resid-
ual moveout curves . It is shown in the literature
[21, [4], [5] that the criterion of the semblance is
not effective when we are in the presence of vari-
ation of the amplitude along the residual move-
out curves. To avoid this problem we assume that
the amplitudes along the residual moveout are lo-

Model for data processing

The noise presented in data is assumed to be zero
mean Gaussian with variance 62 and Indepen-
dent and identically distributed. The amplitudes
ay,; are realisations of Ay ; with distribution of
(Ax )Y ~ A (ar j,0%) where 62 and a; ; where
k=i+w(j,7v) are assumed to be the approxima-

used for the semblance analysis while the sums
in the numerator yield the energy of the stacks
along residual moveout curve shifted in the depth
window. Thus, the semblamce coefficient S(ip, ¥)
gives the normalized ratio of output to input en-
ergy which may vary between 0 and 1, where the
maximum S(ip,y) = 1 is obtained if all consid-
ered amplitudes a;(; ,) ; are identical, separately
for each fixed value of index i. The value of y
in the set of y values which maximises the sem-
blance criterion give the curvature which match
the most with the event. Next section presents the
Bayesian approach of this residual moveout anal-
ysis.

cally uniformly distributed and we use an approx-
imation with Haar wavelet to approximate theses
amplitudes. Let’s call A = (ax j)1<k<w,1<j<m the
matrix that designates all amplitudes within the
depth window of width W which is centered about
iop where k = i+ w(j,y). Instead of calculating
ay,;j by interpolation linear as in the conventional
method, we shall use a kernel regression to cal-
culate a; ; and so take into account more than the
immediate neighbours as it is the case in the con-
ventional method.

tion with the Haar wavelet of amplitudes along
residual moveout curve define by y. Let’s a; ; be
the estimation with Haar wavelet of ay ;.

Y is the realisation of I with pdf mg (0 is a
known parameter which describes a prior knowl-
edge on 7).



The likelihood model

Since Ay ; are assumed to be independents, the likelihood model for data in the matrix A is given by

W M 1 1 2
fur(aly) = TTT1 575290 | 557 (ari—a))

1 &4 2
far(aly) = ————exp | =55 ), ). (a—ax) (2)

Let’s recall that & is function of .

The prior model

The parameter Y is positive and can vary of a zone from the image to an other one. We shall thus
choose to put an uniform prior Uj Yoni ] on the parameter ¥. 0 < VYnin < Yinax-

n 7’}/max

The posterior model

The posterior distribution of I'|A is given by

] I §
exp —2%2 Z Z (ak,j—ak,j) o ()
k=1 j=1
fria (vla) — . 3)
Jexp |55 Y Y (aj—ar)’| mo(v)dy
R+ L k=1 j=1 i

The Metropolis Hastings sampler algorithm

The posterior distribution can be explored by MCMC simulation. We choose the Metropolis Hastings
sampler for our case. To implement the algorithm, we argue proportionally about the posterior distri-
bution. We have
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Applications on synthetic and real data

For the application on synthetic and real data, we choose an uniform prior Uy ¢,1 ¢ for I" prior distri-
bution. o> which is the variance of noise presented in data is estimated by a deterministic method.

Event with strong variations of amplitude according offset and phase changing
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] Figure 4: Outcomes of Metropolis Hastings simulation.
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Figure 3: Event on Offset Domain Common Image Gather which presents
variation of amplitude according offset. 4
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Figure 5: The histogram of the outcomes shows a posterior distribution of
T for the event in figure (3).

Theoretical Value 1.0
Mean value 0.999
Standard deviation 0.003
95% CI [0.994 ; 1.005]
Median 0.9999529

We see that on the synthetic data with strong variation of amplitude, the Bayesian approach gives
satisfying results and brings in more an informations about the uncertainty, what is not the case with

the conventional method.

Comparison of conventional method and Bayesian approach of residual move-

out analysis on real data

Figure 6: Real data : The vertical axe represents the depth, the horizon-
tal the surface location and the third one represents the offset
dimension.

Figure 7: Result of conventional residual moveout analysis

The main difference between the conventional
method and the Bayesian approach is that the lat-

ter is more precise. It observes on the results of
the figure 8 where the geological layers are more
visible than the results of the figure 7. The es-
timation of the uncertainty which motivated this
work is translated here by the standard deviation
(figure 9). Others Informations like credibility in-
terval can be computed.

Figure 9: Standard deviation associate with the Bayesian estimation (fig-

ure 8) of y value
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