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Review of Bayesian stochastic search variable selection

Bayesian variable selection in linear model

SSVS for linear model

Y = XXXβββ + ε, ε ∼ N (0, σ2I)

• Introduce latent binary vector γγγ = (γ1, . . . , γp), where{
γj = 1 if variable j is included in the model
γj = 0 otherwise

• γj used to induce mixture prior on the regression coefficients

βj ∼ (1− γj)I0 + γjN (0, τ 2
j )

• Prior of γγγ updated via Gibbs sampling or Metropolis algorithm.



Identifying Cluster Structures & Relevant Variables

Review of Bayesian stochastic search variable selection

Bayesian variable selection in linear model

• MCMC procedure results in a list of visited models γγγ(t) and their
relative posterior probabilities p(γγγ(t)|XXX,Y), t = 0, . . . ,T .

• Inference for variable selection can be based on:
I vector γγγ with highest joint posterior probability, p(γγγ|XXX,Y)

I γj’s with largest marginal posterior probabilities, p(γj = 1|XXX,Y).

• Outcome for future observations can be predicted via Bayesian
model averaging

Ŷf =
∑
γ

(
XXXf (γ)β̂ββ(γ)

)
· p(γγγ|XXX,Y).

George and McCulloch, JASA, 1993; Statistica Sinica, 1997.
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Review of Bayesian stochastic search variable selection

Bayesian variable selection in classification

Variable selection in multinomial probit model

• Observed data consist of (ZZZn×1,XXXn×p) with categorical response
Zi taking values 0, . . . ,K − 1.

• Use a multinomial probit model to link P(Zi = k) to XXXiβββ.

• Introduce latent matrix YYYn×(K−1), where YYY i = (yi,1, . . . , yi,K−1)

(Albert and Chib, JASA, 1993)

Zi =

{
0 if yi,k < 0 ∀k
k if yi,k = max1≤j≤K−1 yi,j

YYY i = ααα′ + XXX′iβββ + εi, εi ∼ N (0,ΣΣΣ), i = 1 . . . , n
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Review of Bayesian stochastic search variable selection

Bayesian variable selection in classification

• Introduce binary latent vector γγγ to induce mixture prior on βββ

βββ(γ) ∼ N
(
βββ0(γ),HHH(γ) ⊗ Σ

)
• MCMC procedure iterates between the following steps:

(1) Update YYY from p(YYY|γγγ,XXX,ZZZ), a truncated multivariate-t
distribution.

(2) Update γγγ using a Metropolis search.

• Discriminating variables are selected based on p(γγγ|XXX, ŶYY,ZZZ).

Sha, Vannucci, Tadesse, et al., Biometrics, 2004.
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Bayesian variable selection in clustering

Motivation: Discover disease subtypes & detect biomarkers

Interest in identifying homogeneous subgroups of samples and
selecting discriminating variables.

• For various malignancies, existing disease classes are too broad.

• Biomarker profiles may better capture disease heterogeneities.

Challenges:

• unknown number of classes

• class membership of samples not observed

• discriminating markers need to be identified.
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Bayesian variable selection in clustering

Example: Idiopathic dilated cardiomyopathy (IDC)

• IDC results in dilated and weakened heart that does not pump
blood efficiently.

• The causes of IDC are unknown (viral infection, inherited or
spontaneous mutations, toxic exposures) and response to
treatment varies across patients.

Can gene expression profiles capture disease heterogeneities?

• Myocardial cells obtained from 86 patients with IDC at time of
heart transplant.

• RNA samples isolated and hybridized to Affymetrix HU133
arrays.
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Bayesian variable selection in clustering

Heatmap using all probe sets considered for analysis
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Bayesian variable selection in clustering

Bayesian variable selection in model-based clustering

Proposed methods provide a unified approach for discovering cluster
structure among samples and selecting relevant variables.

• Use model-based clustering with an unknown number of
components to uncover cluster structure:

I finite mixture models with reversible jump MCMC techniques.

I infinite mixture models with Dirichlet process mixture priors.

• Use stochastic search MCMC techniques to explore space of
variable subsets and identify discriminating genes.
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Bayesian variable selection in clustering

Finite mixtures with unknown number of components

Model-based clustering

• Let XXX = (xxx1, . . . , xxxn) be independent p-dimensional observations
arising from K populations

f (xxxi|www, θθθ) =

K∑
k=1

wk f (xxxi|θθθk).

• We consider f (xxxi|θθθk) multivariate normal with θθθk = (µµµk,ΣΣΣk).

• Introduce latent vector yyy = (y1, . . . , yn)′, where yi = k if the ith

observation comes from cluster k

p(yi = k) = wk.

Binder, 1978; McLachlan and Basford, 1988; Fraley and Raftery, 1998.
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Bayesian variable selection in clustering

Finite mixtures with unknown number of components

Stochastic search variable selection

• We need to select the variables that provide information about
the cluster structure.

• Introduce latent p-vector γγγ with binary entries{
γj = 1 if variable j defines a mixture distribution
γj = 0 otherwise.

• γ is used to explore the space of variable subsets and search for
models with highest posterior probabilities.

• The use of γγγ is different from the regression setting, where it is
used to induce mixture priors on regression coefficients.
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Bayesian variable selection in clustering

Finite mixtures with unknown number of components

• The likelihood function is given by

L(K, γγγ,www, µµµ,ΣΣΣ, ηηη,ΩΩΩ|X, yyy) =

K∏
k=1

(2π)
−pnk

2 |Σ(γ)k|
−nk

2 wnk
k

× exp

{
−1

2

∑
xi∈Ck

(xxx(γ)i − µµµ(γ)k)
TΣ−1

(γ)k(xxx(γ)i − µµµ(γ)k)

}
×φ(XXX(γc)|ηηη(γc),ΩΩΩ(γc)),

where Ck = {xi|yi = k} with cardinality nk, φ(.) is multivariate normal

density.

• Specify conjugate priors and integrate out mean and covariance
parameters.
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Bayesian variable selection in clustering

Finite mixtures with unknown number of components

Finite mixtures with reversible jump MCMC

Specify prior for number of components, K

K ∼ trunc-Poisson(λ) or Uniform on 2, . . . ,Kmax

MCMC procedure iterates:

(1) Update γγγ from its full conditional.

(2) Update www from its full conditional.

(3) Update yyy from its full conditional.

(4) Split one cluster into two, or merge two into one.

(5) Birth or death of an empty component.

Steps (4) and (5) use reversible jump MCMC (Green 1995; Richardson

and Green 1997).

Tadesse, Sha and Vannucci, JASA, 2005.
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Bayesian variable selection in clustering

Infinite mixtures with DPM

Dirichlet process mixtures

• Let XXX = (xxx1, . . . , xxxn) be independent p-dimensional observations
arising from a mixture of distributions F(θθθi).

• θθθi are assumed to be independent draws from a distribution G,
which follows a Dirichlet process prior (Antoniak 1974).

xxxi|θθθi ∼ F(θθθi)

θθθi|G ∼ G
G ∼ DP(G0, α),
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Bayesian variable selection in clustering

Infinite mixtures with DPM

Dirichlet process mixtures

Equivalent models can be obtained by taking the limit as K →∞ of
finite mixture models with K components.

xxxi|yi, ψψψ ∼ F(ψψψyi
)

yi|www ∼ Discrete(w1, . . . ,wK)

ψψψy ∼ G0

www ∼ Dirichlet(α/K, . . . , α/K)

where the latent variable yi indicates the cluster allocation of sample i
and ψψψyi

corresponds to the identical θθθi’s.
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Bayesian variable selection in clustering

Infinite mixtures with DPM

Dirichlet process mixtures

• Integrating over www and taking K →∞ (Neal 2000)

p(yi = yl for some l 6= i|yyy−i) =
n−i,yl

n− 1 + α

p(yi 6= yl for all l 6= i|yyy−i) =
α

n− 1 + α

• Specify conjugate priors and integrate out mean and covariance
parameters.
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Bayesian variable selection in clustering

Infinite mixtures with DPM

Infinite mixtures with DPM

• Avoids dimensions jumping scheme

p(yi = yl for some l 6= i|y−i, xxxi) = b
n−i,yl

n− 1 + α

∫
F(xxxi;ψψψ)dG−i,yl(ψψψ)

p(yi 6= yl for all l 6= i|y−i, xxxi) = b
α

n− 1 + α

∫
F(xxxi;ψψψ)dG0(ψψψ),

• MCMC procedure iterates the following steps:

(1) Update γγγ using a Metropolis algorithm

(2) Update yyy using split-merge MCMC of Jain & Neal (JCGS 2004).

Kim, Tadesse and Vannucci, Biometrika, 2006.
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Bayesian variable selection in clustering

Infinite mixtures with DPM

Posterior inference

For cluster structure:

• Inference conditional on K̂
I Estimate G by number of clusters most visited by MCMC sampler
I Relabel by minimizing posterior expectation of
L0(yyy;φφφ) = −

∑n
i=1 log{piyi(φφφ)} (Stephens, JRSS-B, 2000).

I Estimate sample allocation by the mode of the marginal posterior
distribution, ŷi = argmax1≤k≤K

{
p(yi = k|XXX, K̂)

}
.

• Use posterior pairwise probabilities p(yi = yj|XXX).

For relevant variables:

• Select variables with largest marginal posterior probabilities,
p(γj = 1|XXX).
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Bayesian variable selection in clustering

Infinite mixtures with DPM

(a) Visited number of clusters (b) Heatmap of selected probe sets
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Discovering cluster structures & relationships between high-dimensional data sets

Motivation: Integrate genomic data sets

• Relating data sets from various genome-wide technologies may
give insights into the complex DNA-RNA-protein relationships.

• There are several ongoing efforts in this area:

I eQTL studies – association between gene expression and SNP
array data (Morley et al. 2004; Cheung et al., Nature 2005).

I Association between gene expression profiles and aCGH data
(Bussey et al. 2006; Stranger et al., Science 2007)
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Discovering cluster structures & relationships between high-dimensional data sets

Relating genomic datasets

• The goal in these studies is to identify DNA sequence variations
that explain changes in mRNA transcript levels.

• The standard methods of analysis consist of fitting univariate
linear regression models for each outcome on each regressor.

I Morley et al. assessed each of 3 554 expression levels on each of
2 455 SNP markers.

I Stranger et al. examined each of 14 925 expression levels with
each of 24 963 autosomal CGH clones one at a time.
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Discovering cluster structures & relationships between high-dimensional data sets

Existing variable selection methods

Several methods have been proposed to relate high-dimensional
covariate data to univariate outcomes

e.g., identify gene expression levels associated with disease
status or time to event in DNA microarray studies.

YN×1

y1
...

yN

Xn×p, p� N

x11 . . . . . . . . . x1p
... . . . . . . . . .

...
xN1 . . . . . . . . . xNp
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Discovering cluster structures & relationships between high-dimensional data sets

Goal:

Relate response and covariate data when both are high-dimensional

YN×q, q� N

y11 . . . . . . . . . y1q
... . . . . . . . . .

...
yN1 . . . . . . . . . yNq

XN×p, p� N

x11 . . . . . . . . . x1p
... . . . . . . . . .

...
xN1 . . . . . . . . . xNp

Identify sets of correlated outcomes modulated by sets of covariates

e.g., ([X34,X590,X1015], [Y1,Y26,Y927])

([X5,X590,X369,X872], [Y47,Y168,Y2156])
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Discovering cluster structures & relationships between high-dimensional data sets

Gene expression CGH profile



Identifying Cluster Structures & Relevant Variables

Discovering cluster structures & relationships between high-dimensional data sets

Stochastic Partitioning Method

Outline

Review of Bayesian stochastic search variable selection
Bayesian variable selection in linear model
Bayesian variable selection in classification

Bayesian variable selection in clustering
Finite mixtures with unknown number of components
Infinite mixtures with DPM

Discovering cluster structures & relationships between
high-dimensional data sets

Stochastic Partitioning Method
MCMC implementation



Identifying Cluster Structures & Relevant Variables

Discovering cluster structures & relationships between high-dimensional data sets

Stochastic Partitioning Method

Proposed stochastic partitioning method

• The data consist of N independent samples with
X = (X1, . . . ,Xp) covariates and Y = (Y1, . . . ,Yq) outcomes.

• We propose pairwise partitioning the data into subsets of X and
Y to identify sets of associated markers.

• An element of the pairwise partition is a pair

S = (XI,YJ), I ⊂ {1, . . . p}, J ⊂ {1, . . . q},

such that the XI will jointly explain changes in and have the same
effect on YJ .

• Each Yj is allowed to belong to one component only, whereas a
variable Xr may belong to many components or to none.
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Discovering cluster structures & relationships between high-dimensional data sets

Stochastic Partitioning Method

• A decomposition of the variables into K components (i.e., a
configuration) is given by

S1 ⊕ . . .⊕ SK = (XI1 ,YJ1)⊕ . . .⊕ (XIK ,YJK ).

• For simpler notation, a component Sk is labeled by its
cardinalities

(|I1|, |J1|)⊕ . . .⊕ (|IK |, |JK |),

0 ≤ |Ik| ≤ p, 1 ≤ |Jk| ≤ q,
∑K

k=1 |Jk| = q.

• Components of type (m, 0) are equivalent to components of type
(1, 0) since X is viewed as a fixed covariate matrix.
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Discovering cluster structures & relationships between high-dimensional data sets

Stochastic Partitioning Method

Example: p = 12, q = 10

([X1], [Y1,Y2])⊕([X1,X12], [Y5,Y8,Y9,Y10])⊕([ ], [Y3,Y6,Y7])⊕([X9,X10],Y4)

Compact notation

(1, 2)⊕ (2, 4)⊕ (0, 3)⊕ (2, 1)
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Discovering cluster structures & relationships between high-dimensional data sets

Stochastic Partitioning Method

Conditional on a partition {S1, . . . ,SK}, outcomes in the same
component are assumed to have similar profiles

Yji|Sk
iid∼ N (αj + µk, σ

2
k ), j = t1, . . . , tnk , i = 1, . . . ,N,

where µk = gk(Xs1 , . . . ,Xsmk
).
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Discovering cluster structures & relationships between high-dimensional data sets

Stochastic Partitioning Method

Priors and marginal likelihood

• We assign a prior to each configuration

p((m1, n1)⊕ . . .⊕ (mK , nK)) ∝
K∏

k=1

ρmk·nk , 0 < ρ ≤ 1.

• We take conjugate priors for the regression parameters and
integrate them out

f (mk, nk) =

∫
φ(mk, nk) dp(θk|σk) dp(σk)

• The marginalized likelihood of a configuration reduces to

f ((m1, n1)⊕ . . .⊕ (mK , nK)) =

K∏
k=1

f (mk, nk)
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MCMC implementation

MCMC implementation

• The number of possible configurations of type (m, n), with
n > 0, is

q∑
k=1

S2(q, k) 2p.k,

where S2 are the Stirling numbers of the second kind.

• We construct a Markov chain, where transitions between
configurations are implemented by splitting or merging
components.
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Discovering cluster structures & relationships between high-dimensional data sets

MCMC implementation

MCMC implementation

• To ensure better mixing among both regressors and response
variables, we implement the Markov chain as a two-step process:

I Step 1: propose moves that allow creation or deletion of (1, 0)

components.

I Step 2: propose moves that allow split or merge of (m, n)

components (n > 1).

• In addition, we use parallel tempering (Geyer, 1991) to prevent
the sampler from being trapped in local modes.

Monni and Tadesse, Bayesian Analysis, 2009.
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Discovering cluster structures & relationships between high-dimensional data sets

MCMC implementation

Parallel tempering implementation

• Define R distributions ξi(x) = ξ(x)1/Ti , 1 = 1
T0
> . . . > 1

TR−1
> 0.

• ξ0(C) = ξ(C) = f (C) · p(C) is the posterior distribution from
which we want to sample.

The tempering algorithm iterates between the following steps:

(i) parallel scan: for each ξi(.), perform a fixed number of updates.

(ii) state exchange: swap neighboring chains and accept the
exchange between configurations at Ti and Ti+1 with probability

P(C(Ti+1)↔ C(Ti)) = min

{
1,
(

f (C(Ti+1))

f (C(Ti))
· p(C(Ti+1))

p(C(Ti))

)1/Ti−1/Ti+1
}
.
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Discovering cluster structures & relationships between high-dimensional data sets

MCMC implementation

Posterior inference

• Pairwise posterior probabilities take into account the
contributions of different configurations

I p× q matrix of posterior probabilities for association between Xi

and Yj

I q× q matrix of posterior probabilities for allocation of (Yi,Yj) to
same components.

• Consider most likely models by locating different modes of the
posterior probability.
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Discovering cluster structures & relationships between high-dimensional data sets

MCMC implementation

Application to eQTL analysis

• Expression quantitative trait loci (eQTL) studies assess the
genetic basis of variations in mRNA transcript abundance.

• We use the data from Morley et al. (Nature, 2004)

I 56 unrelated individuals from 14 CEPH families examined.

I RNA samples from each individual hybridized to Affymetrix
arrays; 3554 probe sets considered for analysis.

I SNP genotypes for each individual obtained on 2455 markers
from the SNP Consortium database.
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Discovering cluster structures & relationships between high-dimensional data sets

MCMC implementation

Posterior inference

Ran MCMC chains for 50 million iterations and focused on last 15
million iterations, sub-sampling configurations every 20 000 scans.

• Use 3554× 3554 matrix of posterior pairwise probabilities that
two probe sets be allocated to the same component to identify
correlated outcomes.

• Use the 2455× 3554 matrix of marginal posterior probabilities
that each SNP be associated with each probe set

I examine rows to focus on specific markers and identify
expression phenotypes to which they are strongly associated;

I examine columns to focus on specific gene expression phenotype
and locate its related markers.
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Discovering cluster structures & relationships between high-dimensional data sets

MCMC implementation

0 10 x 10^6 20 x 10^6 30 x 10^6 40 x 10^6 50 x 10^6

40
0

60
0

80
0

10
00

12
00

iterations (lag 5000)

nu
m

be
r 

of
 n

on
−

(m
,0

) 
co

m
po

ne
nt

s

 

number of non−(m,0) components

re
la

tiv
e 

fr
eq

ue
nc

y

245 250 255 260 265 270

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Number of components of type (m, n)



Identifying Cluster Structures & Relevant Variables

Discovering cluster structures & relationships between high-dimensional data sets

MCMC implementation

Network representation of some gene expressions with posterior

pairwise probability for occurring in same components ≥ 0.7.
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Discovering cluster structures & relationships between high-dimensional data sets

MCMC implementation
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Discovering cluster structures & relationships between high-dimensional data sets

MCMC implementation

SNP marker Gene expression
RefSnp Location (Mbp) Name Location

rs1859674 Chr X (116.29) HDHD1A Xp22.32
UTX Xp11.2
U2AF1L2 Xp22.1
XIST Xq13.2

rs533569 Chr 11 (93.70) HIST1H3H 6p21.3
HIST1H2BF 6p21.3
HIST1H2BE 6p21.3
H2BFS 21q22.3
HIST1H2BC 6p21.3
HIST1H2AC 6p21.3

rs127503 Chr 6 (108.59) SLC4A2 7q35
CDK10 16q24
LCAT 16q22.1
CYP4F12 19p13.1

Example of markers and associated gene expressions
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Discovering cluster structures & relationships between high-dimensional data sets

MCMC implementation

Summary

• Proposed methods provide exploratory tools to investigate key
features and associations in high-dimensional data sets

I mixture models with unknown number of components used to
uncover cluster structures

I stochastic search MCMC techniques used to explore space and
identify variables related to components.

• Additional information may be incorporated to elicit priors and
design better proposal distributions.
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